K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

a: Xét ΔAND vuông tại N và ΔCMB vuông tại M có 

AD=BC

\(\widehat{DAN}=\widehat{BCM}\)

Do đó: ΔAND=ΔCMB

Suy ra: DN=BM

Xét tứ giác BMDN có 

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

Suy ra AE=CF: ED=FB

Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có

FB=ED

\(\widehat{KBF}=\widehat{IDE}\)

Do đó: ΔKBF=ΔIDE

Suy ra: KB=ID

Xét tứ giác KBID có 

KB//ID

KB=ID

Do đó: KBID là hình bình hành

Suy ra: Hai đường chéo KI và BD cắt nhau tại trung điểm của mỗi đường

 

a: Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

Suy ra: AE=CF và DE=BF

Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét ΔKBF vuông tại F và ΔIDE vuông tại E có

KB=ID

\(\widehat{KBF}=\widehat{IDE}\)

Do đó: ΔKBF=ΔIDE

Suy ra: KB=ID

Xét tứ giác BKDI có

BK//ID

BK=ID

Do đó: BKDI là hình bình hành

Suy ra: Hai đường chéo BD và KI cắt nhau tại trung điểm của mỗi đường

21 tháng 10 2021

a: Xét tứ giác BHCD có 

BH//CD

BD//CH

DO đó: BHCD là hình bình hành

a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có

AD=CB

\(\widehat{ADH}=\widehat{CBK}\)

Do đó: ΔAHD=ΔCKB

Suy ra: AH=CK

Xét tứ giác AHCK có 

AH//CK

AH=CK

Do đó: AHCK là hình bình hành

b: Ta có: AHCK là hình bình hành

nên Hai đường chéo AC và HK cắt nhau tại trung điểm của mỗi đường

mà O là trung điểm của HK

nên O là trung điểm của AC

hay A,O,C thẳng hàng