K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

Đặt \(xy=\frac{yz}{2}=\frac{zx}{4}=k\Rightarrow\hept{\begin{cases}yz=2k\\zx=4k\end{cases}}\)

=> xyz = 64 <=> 2xk = 64 => xk = 32 (1)

                     <=> kz = 64 (2) 

                      <=> 4yk = 64 => yk = 16 (3) 

Nhân (1);(2) và (3) ta có : xk.kz.yk = 32.64.16

                                    => k3.xyz = 32.64.16

                                     => k3.64 = 32.64.16

                                     => k3 = 25.24

                                     => k3 = 29

                                      => k3 = (23)3

                                       => k3 = 83

                                      => k = 8

=> \(\hept{\begin{cases}8x=32\\8z=64\\8y=16\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=8\\y=2\end{cases}}\)

27 tháng 3 2016

tách mẫu thành 3x+3y +x+z 
mấy mauax còn lại tương tự
sau đó dúng ssww

27 tháng 3 2016

http://diendantoanhoc.net/topic/156111-t%C3%ADnh-gi%C3%A1-tr%E1%BB%8B-l%E1%BB%9Bn-nh%E1%BA%A5t-c%E1%BB%A7a-m-frac14x3yz-frac1x4y3z-frac13xy4z/

2 tháng 12 2019

Ta có \(xy=\frac{yz}{2}=\frac{zx}{4}\)  => \(\frac{xyz}{z}=\frac{xyz}{2x}=\frac{xyz}{4y}\)mà \(xyz=64 \ne 0\)

                                                => \(z=2x=4y\)

Đặt \(z=2x=4y=k\)

=> \(z=k , x=\frac{k}{2} , y=\frac{k}{4}\)

Ta lại có : \(xyz=64\)

     => \(\frac{k}{2}.\frac{k}{4}.k=64\)

     => \(k^3.\frac{1}{8}=64\)

=> \(k^3=512=8^3\)

=> \(k=8\)

=> \(\hept{\begin{cases}x=\frac{8}{2}=4\\y=\frac{8}{4}=2\\z=8\end{cases}}\)

Vậy x=4 , y=2 , z=8

2 tháng 12 2019

@Nguyễn Thùy Trang Thanks nhiều !

11 tháng 9 2019

\(\left(x+2\right)\left(x-3\right)\left(x-6\right)< 0\)

Suy ra phải có ít nhất 1 số âm

Lại có: \(x-6< x-3< x+2\)

nên \(\hept{\begin{cases}x-6< 0\\x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 6\\x>3\end{cases}}\Leftrightarrow3< x< 6\)

11 tháng 9 2019

giải chi tiết nha mn

29 tháng 6 2020

Ta có: \(3=x^2+y^2+z^2\ge xy+yz+xz\ge\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{3}\)

=> \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le3\)

\(M=\frac{xyz}{x^2+yz}+\frac{xyz}{y^2+zx}+\frac{xyz}{z^2+xy}\)

\(\le\frac{xyz}{2x\sqrt{yz}}+\frac{xyz}{2y\sqrt{xz}}+\frac{xyz}{2z\sqrt{xy}}\)

\(=\frac{1}{2}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le\frac{3}{2}\)

Dấu "=" xảy ra <=> x = y = z=1

10 tháng 10 2018

đé* biết ok

5 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

13 tháng 5 2017

\(xy+yz+zx-xyz=1-x-y-z+xy+yz+zx-xyz\)

\(=\left(1-x\right)-y\left(1-x\right)-z\left(1-x\right)+yz\left(1-x\right)\)

\(=\left(1-x\right)\left(1-y-z+yz\right)=\left(1-x\right)\left(1-y\right)\left(1-z\right)\)

\(xy+yz+zx+xyz+2=1+x+y+z+xy+yz+zx+xyz\)

\(=\left(1+x\right)+y\left(1+x\right)+z\left(1+x\right)+yz\left(1+x\right)\)

\(=\left(1+x\right)\left(1+y\right)\left(1+z\right)\)

\(1+x+y+z=1+1\Rightarrow1+x=\left(1-y\right)+\left(1-z\right)\ge2\sqrt{\left(1-y\right)\left(1-z\right)}\)

Tương tự ta cũng có: \(1+y\ge2\sqrt{\left(1-z\right)\left(1-x\right)}\)

\(1+z\ge2\sqrt{\left(1-x\right)\left(1-y\right)}\)

Vậy \(S\le\frac{\left(1-x\right)\left(1-y\right)\left(1-z\right)}{8\left(1-x\right)\left(1-y\right)\left(1-z\right)}=\frac{1}{8}\)