Tính hợp lý
a) \(\left(\frac{2}{5}\right)^6.\left(\frac{25}{4}\right)^2\)
b) \(\frac{100}{123}:\left(\frac{3}{4}+\frac{7}{12}\right)+\frac{23}{123}:\left(\frac{9}{5}-\frac{7}{15}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{100}{123}:\left(\frac{3}{4}+\frac{7}{2}\right)+\frac{23}{123}:\left(\frac{9}{5}-\frac{7}{15}\right)\)
\(=\frac{100}{123}:\frac{17}{4}+\frac{23}{123}:\frac{4}{3}\)
\(=\frac{100}{123}\times\frac{4}{17}+\frac{23}{123}\times\frac{3}{4}\)
\(=\frac{400}{2091}+\frac{23}{164}=\frac{2773}{8364}\)
a: \(A=\dfrac{63-48-70}{84}:\dfrac{-3\cdot84+4\cdot60+5\cdot70}{840}\cdot\dfrac{1-14}{12}\)
\(=\dfrac{-55}{84}\cdot\dfrac{840}{338}\cdot\dfrac{-13}{12}=\dfrac{55}{1}\cdot\dfrac{10}{338}\cdot\dfrac{13}{12}=\dfrac{275}{156}\)
b: \(=-234\cdot123+123\cdot4356-123\cdot2312+234\cdot123-234\cdot2312+2312\cdot234+2312\cdot123\)
\(=123\cdot4356-123\cdot2312+123\cdot2312=123\cdot4356=535788\)
a: \(=\dfrac{17}{7}+\dfrac{2}{9}-\dfrac{10}{7}-\dfrac{5}{3}\cdot9=1+\dfrac{2}{9}-15=-14+\dfrac{2}{9}=-\dfrac{126}{9}+\dfrac{2}{9}=-\dfrac{124}{9}\)
b: \(=\dfrac{-11}{23}\left(\dfrac{6}{7}+\dfrac{8}{7}\right)-\dfrac{1}{23}=\dfrac{-22}{23}-\dfrac{1}{23}=-1\)
c: \(=\left(\dfrac{377}{-231}-\dfrac{123}{89}+\dfrac{34}{791}\right)\cdot\dfrac{4-3-1}{24}=0\)
d: \(=\dfrac{12}{7}\left(19+\dfrac{5}{8}-15-\dfrac{1}{4}\right)=\dfrac{12}{7}\cdot\dfrac{35}{8}=\dfrac{15}{2}\)
Bài 1
\(a,\left(\frac{3}{5}\right)^2-\left[\frac{1}{3}:3-\sqrt{16}.\left(\frac{1}{2}\right)^2\right]-\left(10.12-2014\right)^0\)
\(=\frac{9}{25}-\left[\frac{1}{9}-4.\frac{1}{4}\right]-1\)
\(=\frac{9}{25}-\left(-\frac{8}{9}\right)-1\)
\(=\frac{9}{25}+\frac{8}{9}-1\)
\(=\frac{56}{225}\)
\(b,|-\frac{100}{123}|:\left(\frac{3}{4}+\frac{7}{12}\right)+\frac{23}{123}:\left(\frac{9}{5}-\frac{7}{15}\right)\)
\(=\frac{100}{123}:\left(\frac{4}{3}\right)+\frac{23}{123}:\frac{4}{3}\)
\(=\left(\frac{100}{123}+\frac{23}{123}\right):\frac{4}{3}\)
\(=1:\frac{4}{3}=\frac{3}{4}\)
Phần c đăng riêng vì mk chưa tìm đc cách giải bt mỗi đáp án :v
\(c,\frac{\left(-5\right)^{32}.20^{43}}{\left(-8\right)^{29}.125^{25}}\)
\(=\frac{\left(-5\right)^{32}.\left(4.5\right)^{43}}{\left[4.\left(-2\right)\right]^{29}.\left(-5^3\right)^{25}}\)
\(=\frac{-5^{32}.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5\right)^{75}}\)
\(=\frac{\left(-5^4\right)^8.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5^3\right)^{25}}\)
\(=-\frac{1}{2}\)
\(a,\left(\frac{2}{5}\right)^6.\left(\frac{25}{4}\right)^2=\left(\frac{2}{2.3}\right)^6.\left(\frac{5}{2}\right)^4\)
\(=\frac{1}{3^6}.\frac{5^4}{2^4}=\frac{5^4}{3^6.2^4}\)
\(b,\frac{100}{123}:\left(\frac{3}{4}+\frac{7}{12}\right)+\frac{23}{123}:\left(\frac{9}{5}-\frac{7}{15}\right)\)
\(=\frac{100}{123}:\left(\frac{9+7}{12}\right)+\frac{23}{123}:\left(\frac{27-7}{15}\right)\)
\(=\frac{100}{123}:\frac{16}{12}+\frac{23}{123}:\frac{20}{15}\)
\(=\frac{100.12}{123.16}+\frac{23.15}{123.20}\)
\(=\frac{5.5.4.3.4}{41.3.4.4}+\frac{23.3.5}{41.3.4.5}\)
\(=\frac{25}{41}+\frac{23}{164}=\frac{25.4+23}{164}\)
\(=\frac{123}{164}=\frac{3}{4}\)