tập hợp A gồm các số có hai chữ số mà tổng của mỗi số đó với số có hai chữ số chữ số đc vt bởi chính hai chữ số của số đó , nhưng theo thứ tự ngược lại là một số chính phương . Số phần tử của tập hợp A là .............
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là ab, số tự nhiên mà khi bình phương lên thành 1 số chính phương bằng ab+ba (đầu bài) là n, ta có:
n2=ab+ba=10a+b+10b+a=(10+1).a+(10+1).b=11a+11b=11(a+b)
=> n2 chia hết cho 11 mà 11 là 1 số nguyên tố nên khi phân tích số n2 thành thừa số nguyên tố thì có mặt thừa số 11. Vậy n=11
Ta có : n2=112=121
=> a+b=121 : 11=11
Vậy ab thuộc {29;38;47;56;65;74;83;92}
Vậy có 8 số thoả mãn đầu bài.
Gọi số cần tìm là ab (a khác 0; a,b < 10)
Ta có:
ab + ba = 10a + b + 10b + aq = 11a + 11b = 11(a + b)
Vì a + b là số chính phương nên a + b chia hết cho 11.
Mà 1 \(\le\) a < 10
0 \(\le\) b < 10
=> 1 \(\le\)a + b < 20
=> a + b = 11.
Ta có bảng sau :
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
Vậy có 8 số thỏa mãn đề bài
Gọi số cần tìm là ab (a khác 0; a,b < 10)
Ta có:
ab + ba = 10a + b + 10b + aq = 11a + 11b = 11(a + b)
Vì a + b là số chính phương nên a + b chia hết cho 11.
Mà 1 $\le$≤ a < 10
0 $\le$≤ b < 10
=> 1 $\le$≤a + b < 20
=> a + b = 11.
Ta có bảng sau :
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
giải : gọi số cần tìm là ab (a khác 0; a,b<10)
ta có : ab+ba=10a+b+10b+aq=11a+11b=11(a+b)
vì a+b là số chính phương nên a+b chia hết cho 11
mà 1 lớn hơn hoặc bằng a <10
0 lớn hơn hoặc bằng b<10
= 1 lớn hơn hoặc bằng a+b<20
=a+b=11
ta có bảng sau :
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
vậy có 8 số thỏa mãn đề bài
Cách 1: Tách số hạng thứ hai
x2 – 6x + 8 = x2 – 2x – 4x + 8
= x(x – 2) – 4( x – 2)
= (x – )(x – 4).
Cách 2: Tách số hạng thứ 3
x2 - 6x + 8 = x2 – 6x + 9 – 1
= (x – 3)2 – 1 = ( x – 3 – 1)(x – 3 + 1)
= (x – 4)( x – 2).
Cách 3: x2 – 6x + 8 = x2 – 4 – 6x + 12
= ( x – 2)(x + 2) – 6(x – 2)
= (x – 2)(x – 4)