K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

\(ĐK:2\le x\le10\)

\(PT\Leftrightarrow\left(\sqrt{x-2}-2\right)+\left(\sqrt{10-x}-2\right)=x^2-12x+36\\ \Leftrightarrow\dfrac{x-6}{\sqrt{x-2}+2}+\dfrac{6-x}{\sqrt{10-x}+2}-\left(x-6\right)^2=0\\ \Leftrightarrow\left(x-6\right)\left(\dfrac{1}{\sqrt{x-2}+2}-\dfrac{1}{\sqrt{10-x}+2}-x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\left(tm\right)\\\dfrac{1}{\sqrt{x-2}+2}-\dfrac{1}{\sqrt{10-x}+2}-x+6=0\left(1\right)\end{matrix}\right.\)

Với \(x\le10\Leftrightarrow\left(1\right)\le\dfrac{1}{2\sqrt{2}+2}-\dfrac{1}{2}-10+6< 0\Leftrightarrow x\in\varnothing\)

Vậy \(x=6\)

 

12 tháng 4 2016

* Điều kiện:  \(2\le x\le10\)

* Nhận xét:

VP = x-12x + 40 = (x-6)2 + 4 => \(VP\ge4\) . Xảy ra dấu bằng khi và chỉ khi (x-6)2 = 0 => x = 6

VT =  \(\sqrt{x-2}+\sqrt{10-x}=1.\sqrt{x-2}+1.\sqrt{10-x}\)

Áp dụng bất đẳng thức Bi-nhi-a Cốp-xki  ta có:

VT \(\le\sqrt{\left(1^2+1^2\right).\left(\sqrt{\left(x-2\right)^2}+\sqrt{\left(10-x\right)^2}\right)}=4\)

Xảy ra dấu bằng khi \(\sqrt{x-2}=\sqrt{10-x}\) => x = 6

Như vậy: \(VP\ge4;VT\le4\) 

=> PT có nghiệm khi và chỉ khi VP = VT = 4 => x = 6

12 tháng 4 2016

\(t=\sqrt{x-2}+\sqrt{10-x}\)

\(\Rightarrow t^2=8+2\sqrt{-x^2+12x-20}\)\(\Rightarrow-x^2+12x-20=\left(\frac{t^2}{2}-4\right)^2=\frac{t^4}{4}-4t^2+16\)

\(pt\rightarrow t=-\left(\frac{t^4}{4}-4t^2+16\right)+20\Leftrightarrow\left(t-4\right)\left(t^3+4t^2+4\right)=0\)

\(\Leftrightarrow t=4\text{ }\left(do\text{ }t>0\right)\)

\(\Rightarrow-x^2+12x-20=\left(\frac{t^2}{2}-4\right)^2=16\Leftrightarrow x=6\)

15 tháng 1 2019

xét vế trái :

\(\sqrt[]{x-2}+\sqrt{10-x}=< \sqrt{2\left(x-2+10-x\right)}=< 4\)

=>vp=<4

=>\(x^2-12x+40=< 4\)

=>\(\left(x-6\right)^2=< 0\)

=> xảy ra dấu = <=>x=6

vậy pt có nghiệm là 6

30 tháng 11 2017

Asp dụng BĐT Bunha, ta có:

\(\left(\sqrt{x-2}+\sqrt{10-x}\right)^2\le\left(1+1\right)\left(x-2+10-x\right)\le16\)

\(\Rightarrow\sqrt{x-2}+\sqrt{x-10}\le4\)

\(x^2-12x+40=\left(x-6\right)^2+4\ge4\)

\(\Rightarrow VT\le4\le VT\)

Dấu " = " xảy ra khi \(\Leftrightarrow VT=4=VT\)

\(\Leftrightarrow x=6\)

30 tháng 11 2017

Thanks bạn Wrecking ball rất nhiều

NV
13 tháng 11 2019

ĐKXĐ: \(2\le x\le10\)

Ta có \(VT\le\sqrt{2\left(x-2+10-x\right)}=4\)

\(VT=x^2-12x+36+4=\left(x-6\right)^2+4\ge4\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x-2=10-x\\x-6=0\end{matrix}\right.\) \(\Rightarrow x=6\)

4 tháng 10 2018

\(\sqrt{x-2}\)+\(\sqrt{x-10}\)= x\(^2\)-12x+36+4

<=>\(\sqrt{x-2}\)+\(\sqrt{x-10}\)-4=(x-6)\(^2\)

<=>(\(\sqrt{x-2}\)-2)+(\(\sqrt{x-10}\)-2)=(x-6)\(^2\)

<=>\(\dfrac{x-6}{\sqrt{x-2}+2}\)-\(\dfrac{x-6}{\sqrt{x-10}+2}\)-(x-6)\(^2\)=0

Nghiệm x = 6

Mk cũng k biết đúng hay k nữa ! hahahahaha!

31 tháng 10 2019

Em thử sử dụng phương pháp :Dùng BĐT ạ!

ĐKXĐ: \(2\le x\le10\)

Áp dụng BĐT Bunykovski: \(VT=\sqrt{x-2}+\sqrt{10-x}\le\sqrt{2\left(x-2+10-x\right)}=4\)

Lại có: \(VP=\left(x^2-12x+36\right)+4=\left(x-6\right)^2+4\ge4\)

Từ đó suy ra \(VT\le4\le VP\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-2}=\sqrt{10-x}\\x-6=0\end{matrix}\right.\Leftrightarrow x=6\)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

Áp dụng BĐT Cô-si ngược dấu ta có:

\(\sqrt{x-2}=\sqrt{1(x-2)}\leq \frac{1+(x-2)}{2}\)

\(\sqrt{x-10}=\sqrt{1(x-10)}\leq \frac{1+(x-10)}{2}\)

\(\Rightarrow x^2-12x+40=\sqrt{x-2}+\sqrt{x-10}\leq \frac{x-1}{2}+\frac{x-9}{2}=x-5\)

\(\Rightarrow x^2-13x+45\leq 0\)

\(\Leftrightarrow (x-\frac{13}{2})^2+\frac{11}{4}\leq 0\) (vô lý)

Do đó pt đã cho vô nghiệm.

30 tháng 9 2018

cai nay la cosi xuoi dau ma :3