Chứng tỏ rằng : với mỗi số tự nhiên n thì 2 số 2n+1 và 14n+5 là hai số tự nhiên cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d=ƯCLN(2n+1;2n^2-1)
=>2n+1 chia hết cho d và 2n^2-1 chia hết cho d
=>2n^2+n chia hết cho d và 2n^2-1 chia hết cho d
=>n+1 chia hết cho d và 2n+1 chia hết cho d
=>2n+2 chia hết cho d và 2n+1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+1 và 2n^2-1 là hai số nguyên tố cùng nhau
gọi d \(\in\)BC ( 2n + 1, 6n + 5 ) thì 2n + 1 \(⋮\)d ; 6n + 5 \(⋮\)d
Do đó ( 6n + 5 ) - 3 . ( 2n + 1 ) \(⋮\)d \(\Rightarrow\)2 \(⋮\)d \(\Rightarrow\)d \(\in\){ 1 ; 2 }
d là ước của số lẻ 2n + 1 nên d \(\ne\)2
Vậy d = 1
Do đó ( 2n + 1 ; 6n + 5 ) = 1
Gọi d là UCLN(2n+1;14n+5)
->(14n+5)-(2n+1)chia hết cho d
->(14n+5)-7(2n+1) chia hết cho d
->14n+5-14n-1 chia hết cho d
->n+5-n-1
4 chia hết cho d
d thuộc {1;-1;2;-2;4;-4}
Sau đó thì bạn dùng phương pháp thử chọn nha.
gọi d>0 là ước dung của 2n+1 và 6n+5
d là ước số 3(2n+1)=6n+3
(6n+5)_(6n+3)=2
suy ra d là ước của số lẻ :2n+1 suy ra d=1
vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau
**** nhé Thanh Lộc thông minh
Gọi (14n+3,21n+4)=d (d thuộc N)
=>14n+3,21n+4 chia hết cho d
=>3(14n+3)-2(21n+4)=1 chia hết cho d
=>d=1
Vậy 14n+3 và 21n+4 là hai số nguyên tố cùng nhau với mọi số tự nhiên n
Gọi ƯCLN(2n+3;n+2)=d
Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d
=>2n+3 chia hết cho d; 2(n+2)chia hết cho d
=> 2n+3 chia hết cho d;2n+4 chia hết cho d
=>[2n+4-(2n+3)]chia hết cho d
=>2n+4-2n-3 chia hết cho d
=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1
Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau
a) Đặt UCLN ( n ; n - 1 ) = d
=> n chia hết cho d ; n - 1 chia hết cho d
=> n - ( n - 1 ) chia hết cho d
=> n - n + 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> n và n - 1 là 2 số nguyên tố cùng nhau
b,Đặt UCLN ( 2n + 1 ; 14n + 6 ) = d
=> 2n + 1 chia hết cho d ; 14n + 6 chia hết cho d
=> 7 ( 2n + 1 ) chia hết cho d ; 14n + 6 chia hết cho d
=> 14n + 7 chia hết cho d ; 14n + 6 chia hết cho d
=> ( 14n + 7 ) - ( 14n + 6 ) chia hết cho d
=> 14n + 7 - 14n - 6 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n + 1 và 14n + 6 là 2 số nguyên tố cùng nhau
Bài giải
Nếu \(n\in N\) thì \(2n\in N\text{ }\Rightarrow\text{ }2n+1\in N\)
\(14n\in N\text{ }\Rightarrow\text{ }14n+5\in N\)
\(\Rightarrow\text{ Điều phải chứng minh}\)