K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

Trước tiên ta cần chứng minh :

\(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Trong 3 số : \(\hept{\begin{cases}a-1\\b-1\\c-1\end{cases}}\) sẽ có ít nhất 2 số cùng dấu 

Giả sử hai số đó là : \(a-1,b-1\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)

\(\Rightarrow2c\left(a-1\right)\left(b-1\right)\ge0\)

\(\Rightarrow2abc\ge2\left(ac+bc-c\right)\)

Giờ ta cần chứng minh : \(a^2+b^2+c^2+2\left(ac+bc-c\right)+1\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow b^2-2ab+a^2+c^2-2c+1\ge0\)

\(\Leftrightarrow\left(b-a\right)^2+\left(c-1\right)^2\ge0\) ( đúng )

\(\Rightarrow\) ta có đpcm 

Quay lại bài toán ban đầu ta có :

\(P=a^2+b^2+c^2+2abc+\frac{18}{ab+bc+ac}\ge2\left(ab+bc+ca\right)-1+\frac{18}{ab+bc+ca}\)

\(\ge2.2.3\sqrt{\frac{ab+bc+ca}{ab+bc+ca}}-1=11\)

Dấu " = " xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!!

28 tháng 11 2019

Vai trò của a, b, c là bình đẳng, không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\)

Ta có BĐT quen thuộc sau: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Có: \(VT-VP=\left(\sqrt{a}-\sqrt{b}\right)^2\left(a+b+2\sqrt{ab}-2c\right)+\left(c-1\right)^2+2c\left(\sqrt{ab}-1\right)^2\ge0\)(vì \(c=min\left\{a,b,c\right\}\)

Từ đó \(P\ge2\left(ab+bc+ca\right)+\frac{18}{ab+bc+ca}-1\)

\(\ge2\sqrt{2\left(ab+bc+ca\right).\frac{18}{ab+bc+ca}}-1=11\)

Đẳng thức xảy ra khi a = b = c =  1

22 tháng 5 2019

Theo nguyên lý diriclet ta có

Trong 3 số (a-1);(b-1);(c-1) luôn có hai số cùng dấu

Giả sử (a-1);(b-1) cùng dấu

=> \(c\left(a-1\right)\left(b-1\right)\ge0\)

=> \(abc\ge ac+bc-c\)

Lại có \(a^2+b^2\ge2ab\)

        \(c^2+1\ge2c\)

Khi đó 

\(P\ge2ab+2c-1+2\left(ac+bc-c\right)+\frac{18}{ab+bc+ac}\)

=> \(P\ge2\left(ab+bc+ac\right)+\frac{18}{ab+bc+ac}-1\ge2\sqrt{2.18}-1=11\)

Vậy \(MinP=11\)khii a=b=c=1

20 tháng 5 2020

Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x,y,z\right)\)

thi \(P= \Sigma \frac{z^2}{x+y} \geq \frac{x+y+z}{2} \) (1)

Mat khac co \(x+y+z=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\) (2)

Tu (1) va (2) suy ra \(P\ge\frac{3}{2}\).Dau = xay ra khi \(a=b=c=1\)

25 tháng 3 2017

Trước tiên ta cần chứng minh:

\(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Trong 3 số \(\left\{{}\begin{matrix}a-1\\b-1\\c-1\end{matrix}\right.\) sẽ có ít nhất 2 số cùng dấu

Giả sử 2 số đó là \(a-1,b-1\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)

\(\Rightarrow2c\left(a-1\right)\left(b-1\right)\ge0\)

\(\Rightarrow2abc\ge2\left(ac+bc-c\right)\)

Giờ ta cần chứng minh: \(a^2+b^2+c^2+2\left(ac+bc-c\right)+1\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow b^2-2ab+a^2+c^2-2c+1\ge0\)

\(\Leftrightarrow\left(b-a\right)^2+\left(c-1\right)^2\ge0\) (đúng)

\(\Rightarrow\) Ta có ĐPCM

Quay lại bài toán ban đầu ta có:

\(P=a^2+b^2+c^2+2abc+\dfrac{18}{ab+bc+ca}\ge2\left(ab+bc+ca\right)-1+\dfrac{18}{ab+bc+ca}\)

\(\ge2.2.3\sqrt{\dfrac{ab+bc+ca}{ab+bc+ca}}-1=11\)

Dấu = xảy ra khi \(a=b=c=1\)

25 tháng 3 2017

Là sao?

3 tháng 4 2017

Do a, b, c dương áp dụng bất đẳng thức Cô-si ta có:

\(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge2\sqrt{\frac{b^2c^2}{a^2}.\frac{a^2c^2}{b^2}}=2c^2\)(1)

Tương tự \(\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge2a^2\) (2)  và \(\frac{b^2c^2}{a^2}+\frac{a^2b^2}{c^2}\ge2b^2\) (3)

Cộng (1), (2), (3) vế theo vế rồi chia 2 vế cho 2 ta được \(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge a^2+b^2+c^2=1\)

Ta có \(P^2=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\left(\frac{bc}{a}.\frac{ac}{b}+\frac{ac}{b}.\frac{ab}{c}+\frac{bc}{a}.\frac{ab}{c}\right)\)

\(P^2=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\left(a^2+b^2+c^2\right)=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\ge1+2=3\)

Vậy \(P_{min}=\sqrt{3}\) \(\Leftrightarrow\) \(a=b=c=\frac{\sqrt{3}}{3}\)

3 tháng 4 2017

Kamishamunita

30 tháng 12 2016

\(\frac{9}{2\left(ab+bc+ca\right)}+\frac{2}{a^2+b^2+c^2}\)

\(=\frac{1}{2\left(ab+bc+ca\right)}+2.\left(\frac{4}{2\left(ab+bc+ca\right)}+\frac{1}{a^2+b^2+c^2}\right)\)

\(\ge\frac{1}{2.\frac{\left(a+b+c\right)^2}{3}}+2.\frac{\left(2+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)

\(=\frac{1}{2.\frac{1}{3}}+2.\frac{9}{1}=\frac{39}{2}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

13 tháng 1 2017

tao ko biet