K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

Phương trình vô nghiệm

Chọn: D

giải pt: \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) làm thế này mà chả hiểu sao lại bị gạch, ai biết chỉ với, cảm ơn nak: + ĐK:\(\left\{{}\begin{matrix}x\ge1\\x+3-4\sqrt{x-1}\ge0\\x+8-6\sqrt{x-1}\ge0\end{matrix}\right.\) \(\Leftrightarrow x\ge1\) + pt đã cho \(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\) \(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\) (*) Th1:...
Đọc tiếp

giải pt: \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)

làm thế này mà chả hiểu sao lại bị gạch, ai biết chỉ với, cảm ơn nak:

+ ĐK:\(\left\{{}\begin{matrix}x\ge1\\x+3-4\sqrt{x-1}\ge0\\x+8-6\sqrt{x-1}\ge0\end{matrix}\right.\) \(\Leftrightarrow x\ge1\)

+ pt đã cho \(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\) (*)

Th1: \(\left\{{}\begin{matrix}\sqrt{x-1}-2< 0\\\sqrt{x-1}-3< 0\end{matrix}\right.\)

(*) \(\Leftrightarrow2-\sqrt{x-1}+3-\sqrt{x-1}=1\Leftrightarrow2\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=2\Leftrightarrow x=5\left(N\right)\)

Th2: \(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\ge0\end{matrix}\right.\)

(*) \(\Leftrightarrow\sqrt{x-1}-2+\sqrt{x-1}-3=1\Leftrightarrow2\sqrt{x-1}=6\Leftrightarrow\sqrt{x-1}=3\Leftrightarrow x=10\left(N\right)\)

Th3: \(\sqrt{x-1}-3< 0\le\sqrt{x-1}-2\)

(*) \(\Leftrightarrow\sqrt{x-1}-2+3-\sqrt{x-1}=1\Leftrightarrow1=1\left(đúng\right)\)

Kl: \(x\ge1\)

3
25 tháng 7 2017

sai là đúng rồi , bạn thử thay x = 2 vô xem thấy liền ah

25 tháng 7 2017

Cold Wind cx dạng bài đó nhưng t làm cách khác u (-_-)

https://hoc24.vn/hoi-dap/question/402888.html

chỗ câu b ah ~~~ cái bảng xét dấu ý (^~^) thử lại bài này vs cách đó xem ntn???

2 tháng 8 2015

Để mình làm tiếp nha 

=> \(\sqrt{x+3}-2=0\Rightarrow\sqrt{x+3}=2\Rightarrow x+3=4\Rightarrow x=1\)  (laoij)

Hoặc \(\sqrt{x-2}+1=0\Leftrightarrow\sqrt{x+2}=-1\)  ( loại)

VẬy pt vô nghiệm 

 

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)Vì \(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))Ta có: Nếu \(\(x&gt;1\Leftrightarrow f\left(x\right)&gt;f\left(1\right)=3\)\)nên pt vô nghiệm Nếu \(\(-3\le x&lt; 1\Leftrightarrow f\left(x\right)&lt; f\left(1\right)=3\)\)nên pt vô nghuêmjVậy x = 1B2, GHPT:...
Đọc tiếp

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)

GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)

\(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))

Ta có: Nếu \(\(x&gt;1\Leftrightarrow f\left(x\right)&gt;f\left(1\right)=3\)\)nên pt vô nghiệm

Nếu \(\(-3\le x&lt; 1\Leftrightarrow f\left(x\right)&lt; f\left(1\right)=3\)\)nên pt vô nghuêmj

Vậy x = 1

B2, GHPT: \(\(\hept{\begin{cases}2x^2+3=\left(4x^2-2yx^2\right)\sqrt{3-2y}+\frac{4x^2+1}{x}\\\sqrt{2-\sqrt{3-2y}}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\end{cases}}\)\)

ĐK \(\(\hept{\begin{cases}-\frac{1}{2}\le y\le\frac{3}{2}\\x\ne0\\x\ne-\frac{1}{2}\end{cases}}\)\)

Xét pt (1) \(\(\Leftrightarrow2x^2+3-4x-\frac{1}{x}=x^2\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow-\frac{1}{x^3}+\frac{3}{x^2}-\frac{4}{x}+2=\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow\left(-\frac{1}{x}+1\right)^3+\left(-\frac{1}{x}+1\right)=\left(\sqrt{3-2y}\right)^3+\sqrt{3-2y}\)\)

Xét hàm số \(\(f\left(t\right)=t^3+t\)\)trên R có \(\(f'\left(t\right)=3t^2+1&gt;0\forall t\in R\)\)

Suy ra f(t) đồng biến trên R . Nên \(\(f\left(-\frac{1}{x}+1\right)=f\left(\sqrt{3-2y}\right)\Leftrightarrow-\frac{1}{x}+1=\sqrt{3-2y}\)\)

Thay vào (2) \(\(\sqrt{2-\left(1-\frac{1}{x}\right)}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\sqrt{\frac{1}{x}+1}=\frac{\sqrt[3]{x^2\left(x+2\right)}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\left(2x+1\right)\sqrt{\frac{1}{x}+1}=x+2+\sqrt[3]{x^2\left(x+2\right)}\)\)

\(\(\Leftrightarrow\left(2+\frac{1}{x}\right)\sqrt{1+\frac{1}{x}}=1+\frac{2}{x}+\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow f\left(\sqrt{1+\frac{1}{x}}\right)=f\left(\sqrt[3]{1+\frac{2}{x}}\right)\)\)

\(\(\Leftrightarrow\sqrt{1+\frac{1}{x}}=\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow\left(1+\frac{1}{x}\right)^3=\left(1+\frac{2}{x}\right)^2\)\)

Đặt \(\(\frac{1}{x}=a\)\)

\(\(\Rightarrow Pt:\left(a+1\right)^3=\left(2a+1\right)^2\)\)

Tự làm nốt , mai ra lớp t giảng lại cho ...

3
13 tháng 1 2019

Vãi ạ :))

13 tháng 1 2019

ttpq_Trần Thanh Phương vãi j ?

26 tháng 5 2019

#)Trả lời :

   Toán lớp 1 ak a ??? chắc 2 năm ns em còn k lm đc :v 

26 tháng 5 2019

Bài 42 , Có \(m=\sqrt[3]{4+\sqrt{80}}-\sqrt[3]{\sqrt{80}-4}\)

    \(\Rightarrow m^3=4+\sqrt{80}-\sqrt{80}+4-3m\sqrt[3]{\left(4+\sqrt{80}\right)\left(\sqrt{80-4}\right)}\)

    \(\Leftrightarrow m^3=8-3m\sqrt[3]{80-16}\)

    \(\Leftrightarrow m^3=8-3m\sqrt[3]{64}\)

    \(\Leftrightarrow m^3=8-12m\)

    \(\Leftrightarrow m^3+12m-8=0\)

Vì vậy m là nghiệm của pt \(x^3+12x-8=0\)

Bài 44, c, \(D=\sqrt[3]{2+10\sqrt{\frac{1}{27}}}+\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)

\(\Rightarrow D^3=2+10\sqrt{\frac{1}{27}}+2-10\sqrt{\frac{1}{27}}+3D\sqrt[3]{\left(2+10\sqrt{\frac{1}{27}}\right)\left(2-10\sqrt{\frac{1}{27}}\right)}\)

\(\Leftrightarrow D^3=4+3D\sqrt[3]{4-\frac{100}{27}}\)

\(\Leftrightarrow D^3=4+3D\sqrt[3]{\frac{8}{27}}\)

\(\Leftrightarrow D^3=4+2D\)

\(\Leftrightarrow D^3-2D-4=0\)

\(\Leftrightarrow D^3-4D+2D-4=0\)

\(\Leftrightarrow D\left(D^2-4\right)+2\left(D-2\right)=0\)

\(\Leftrightarrow D\left(D-2\right)\left(D+2\right)+2\left(D-2\right)=0\)

\(\Leftrightarrow\left(D-2\right)\left[D\left(D+2\right)+2\right]=0\)

\(\Leftrightarrow\left(D-2\right)\left(D^2+2D+2\right)=0\)

\(\Leftrightarrow\left(D-2\right)\left[\left(D+1\right)^2+1\right]=0\)

Vì [....] > 0 nên D - 2 = 0 <=> D = 2 

Ý d làm tương tự nhá