Cho tam giác ABC. Kẻ tia AH vuông góc với BC tại H. Trên nửa mặt phẳng bờ AC không chứa điểm H. Vẽ tam giác ACD sao cho AD = BC và CD=AB.
Chứng minh rằng: a, AB // CD
b, AH vuông góc với AD
( ko cần vẽ hình nhé. giúp mik cách giải thôi.)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABC và tam giác CDA có AB=CD;BC=AD;AD chung
=>tam giác ABC=tam giác CDA
=>góc ACB=góc DAC(2 góc tương ứng)
mà 2 góc này có vị trí so le trong nên AB//CD
mà AH vuông góc BC nên AH vuông góc CD
Xét tam giác ABC và tam giác CDA
có AC chung
AB = CD
BC =DA
=> Tam giác ABC = tam giác CDA (c-c-c)
=> gócCAB = góc DCA ( góc tương ứng)
mà 2 góc này là 2 góc SLT
=> AB//CD.
+ góc ACB =góc CAD( góc tương ứng)
Mà 2 góc này là 2 góc SLT
=> AD//BC
Mà AH vuông góc với BC => AH vuông góc với AD
a) Xét \(\Delta ABH\)có:
\(\widehat{BAH}+\widehat{ABH}+\widehat{AHB}=180^o\)( đl tổng 3 góc của 1 tam giác)
hay \(\widehat{BAH}+60^o+90^o=180^o\)
\(\Rightarrow\widehat{BAH}=30^o\)
b) Xét \(\Delta ABC\)và \(\Delta CDA\)có:
\(AB=CD\left(gt\right)\)
\(\widehat{BAC}=\widehat{ACD}\)( 2 góc slt)
\(AC\)cạnh chung
\(\Rightarrow\Delta ABC=\Delta CDA\left(c-g-c\right)\)
\(\Rightarrow\widehat{ACB}=\widehat{CAD}\)( 2 góc tương ứng)
c) Ta có: \(\widehat{ACB}=\widehat{CAD}\)( c/mt)
Mà 2 góc này nằm ở vị trí slt
\(\Rightarrow AD//BC\)
\(\Rightarrow\widehat{AHB}=\widehat{HAD}\)(2 góc slt)
Mà \(\widehat{AHB}=90^o\left(gt\right)\)
\(\Rightarrow\widehat{HAD}=90^o\)
Hay nói cách AD vuông góc AH( đpcm)
học tốt!!
a) Xét tam giác BAC và tam giác DAC:
AB = CD (gt)
AD = BC (gt)
AC chung
=> tam giác BAC = tam giác DAC (c.c.c) => góc BAC = góc ACD mà 2 óc này ở vị trí so le trong nên suy ra AB // CD (đpcm).
b) Ta có: tam giác BAC = tam giác DAC (chứng minh trên) => góc DAC = góc ACB mà 2 góc này ở vị trí so le trong nên suy ra AD // BC.
Ta lại có: AH vuông góc với BC (gt)
AD // BC (chứng minh trên)
=> AH vuông góc với AD (đpcm).
Giải:
a) Xét \(\Delta BAC,\Delta DCA\) có:
\(AD=BC\left(gt\right)\)
\(CD=AB\left(gt\right)\)
AC: cạnh chung
\(\Rightarrow\Delta BAC=\Delta DAC\left(c-c-c\right)\)
\(\Rightarrow\widehat{BAC}=\widehat{ACD}\) ( góc t/ứng )
mà 2 góc trên ở vị trí so le trong nên AB // CD và AD // BC
b) Vì \(AH\perp BC\) và AD // BC nên \(AH\perp AD\)
Vậy...
Bạn ơi! Đề bạn cho bị sai rồi!
Phải là AD = AB chứ không phải là AD = CD
Mình chỉ biết câu a thôi!
Bạn tự vẽ hình và ghi gt kl nha!
Xét 2 tam giác ABC và tam giác ADC có:
AB = CD (gt)
AC là cạnh chung
AD = BC (gt)
suy ra tam giác ABC = tam giác ADC ( c-c-c)
suy ra góc A = góc C (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
suy ra AB // CD
a) Vì \(AH\perp BC\Rightarrow\widehat{AHB}=90^o\)\(\Rightarrow\widehat{BAH}=90^o-\widehat{ABC}=90^o-60^o=30^o\)
b) Do \(AB//CD\Rightarrow\widehat{BAC}=\widehat{ACD}\)(2 góc so le trong)
\(\Rightarrow\Delta ABC=\Delta CDA\left(cgc\right)\)vì\(\hept{\begin{cases}AB=CD\\\widehat{BAC}=\widehat{ACD}\\ACchung\end{cases}}\)
c) Vì \(\Delta ABC=\Delta CDA\Rightarrow\widehat{ACB}=\widehat{CAD}\)(2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong của 2 đường thẳng AD và BC\(\Rightarrow AD//BC\)
Ta có \(AD//BC,AH\perp BC\Rightarrow AD\perp AH\)
ta có CD=AB(gt)
\(\Rightarrow\)ABCD là hình bình hành ( CD và AB là 2 cặp cạnh đối )
\(\Rightarrow\)\(AB//CD\) (tc hbh )
b) có \(AD//BC\)(tc hbh )
mả AH vuông góc với BC
\(\Rightarrow\)AH vuông góc với AD
hok tốt
a ) Xét \(\Delta\)ABC và \(\Delta\)CDA có :
\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)CDA ( c - c - c )
\(\Rightarrow\)BÂC = Góc DCA ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong nên AB // CD
b ) Ta có : \(\Delta\)ABC = \(\Delta\)CDA ( c - c - c )
\(\Rightarrow\)Góc BCA = DÂC ( 2 góc tương ứng )
Mà 2 góc ở vị trí so le trong nên AD // BC ( 1 )
Mặt khác ta có : AH \(\perp\)BC ( giả thiết ) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)AD \(\perp\)AH