ChoΔ ABC có góc B=2 gócC. Trên tia đối của tia CB. Lấy 1 điểm D sao cho góc CDA= góc CAD. Gọi AX là tia đối của tia AC
a, chứng minh góc BAx = góc CAD
b, Cho góc A =30độ. Tính góc B và góc CAD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ABC=góc ACB=(180-50)/2=130/2=65 độ
b: ΔÂBC cân tại A
mà AM là trung tuyến
nen AM vuông góc với BC
c: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>AC//BD
a) Ta có ^A + ^B= 90° (ΔABC vuông tại C)
^A + 2^A= 90°
3^A = 90°
^A = 30°
^B= 90° - 30°= 60°
b)Xét ΔACB và ΔACD có
AC là cạnh chung
^ACB= ^ACD (=90°)
CD= CB (gt)
Vậy ΔACB = ΔACD
=> AD= AB
Xét ΔANC và ΔAMC có
AN= AM (gt)
^NAC=^MAC ( ΔACB = ΔACD )
AC là cạnh chung
Vậy ΔANC = ΔAMC
=> CN= CM
c) Xét ΔNCI và ΔMCI có
CN=CM (cmt)
^NCI=^MCI ( ΔANC = ΔAMC)
CI là cạnh chung
Vậy ΔNCI = ΔMCI
=> IN= IM
Bạn tự vẽ hình nhé!
Vì BD là p/g của góc ABC => góc ABD = góc DBC = \(\frac{1}{2}\) góc ABC = góc C
=> góc ABD = góc C
Mà góc ABN + ABD = 180o; góc ACP + C = 180o
Nên góc ABN = ACP
Xét tam giác ABN và tam giác PCA có: BN = CA; góc ABN = PCA ; AB = PC
=> tam giác ABN = PCA ( c - g - c)
=> góc BAN = APC
Vậy để AP | AN => góc PAN = 90o => BAN + BAC + CAP = 90o
=> APC + BAC + CAP = 90o
Xét tam giác ACP có: góc ACB = APC + CAP ( t/ c góc ngoài tam giác )
=> góc ACB + BAC = 90o
=> góc ABC = 90o => góc ACB = ABC/ 2 = 45o
Vậy góc ACB = 45o thì AN | AP
a: góc ABC=góc ACB=(180-50)/2=130/2=65 độ
b: ΔÂBC cân tại A
mà AM là trung tuyến
nen AM vuông góc với BC
c: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>AC//BD
a: \(\widehat{B}=\widehat{C}=\dfrac{180^0-70^0}{2}=55^0\)
b: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
c: Xét ΔAMN có
AB/BM=AC/CN
nên MN//BC
d: Ta có: ΔAMN cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
=>AI⊥MN
mà MN//BC
nên AI⊥BC
mà AD⊥BC
và AD,AI có điểm chung là A
nên D,A,I thẳng hàng
e: Xét ΔBEC có
D là trung điểm của BC
DA//BE
Do đó: A là trung điểm của EC