Bt
Cho góc nhọn xOy và tia phân giác Oz của góc đó.Trên tia Ox lấy điểm A , trên tia Oy lấy điểm B sao cho OA=OB.Gọi C là 1 điểm trên tia Oz . Chứng minh:
a) AC=BC.
b) góc xAC=góc yBC
c) AB vuông góc Oz
Các bạn giúp mình nha mình cần gấp lắm!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a) \(\Delta AOC=\Delta BOC\left(c-g-c\right)\)\(\Rightarrow AC=BC\)
và \(\widehat{OAC}=\widehat{OBC}\)mà\(\widehat{OAC}+\widehat{CAx}=180^o\),do đó \(\widehat{xAC}=\widehat{yBC}\)
b) Gọi giao điểm của AB với tia Oz là H,ta có :
\(\Delta OHA=\Delta OHB\left(c-g-c\right)\),do đó \(\widehat{AHO}=\widehat{OHB}\)mà
\(\Delta OHA=\Delta OHB=90^o\)
\(\Rightarrow\)\(AB\perp Oz\)
P/s Hình hơn xấu :)
a) Xét △OIA và △OIB có:
OA = OB
\(\widehat{AOI}=\widehat{BOI}\)
OI : cạnh chung
Suy ra △OIA = △OIB (c.g.c)
Ta lại có △OAB có OA = OB nên △OAB là tam giác cân tại O
Vì Oz là đường phân giác của △OAB nên Oz đồng thời là đường
cao của △OAB.
Suy ra \(Oz\perp AB\)(*)
b)△INO có \(\widehat{OIN}+\widehat{N}+\widehat{ION}\)= 180o (tổng ba góc của một tam giác)
△IMO có \(\widehat{OI}M+\widehat{M}+\widehat{IOM}\)= 180o (tổng ba góc của một tam giác)
Mà \(\widehat{ION}=\widehat{IOM};\widehat{N}=\widehat{M}=90^o\)
Nên \(\widehat{OIN}=\widehat{OIM}\)
Xét △IMO và △INO có :
\(\widehat{OIN}=\widehat{OIM}\)
IO : cạnh chung
\(\widehat{ION}=\widehat{IOM}\)
Suy ra △IMO = △INO (g.c.g) (**)
Nên IM = IN
c) Từ (*) suy ra \(\widehat{BIO}=\widehat{AIO}=90^o\)
Mặc khác \(\widehat{BIO}=\widehat{BIM}+\widehat{MIO}\)
\(\widehat{AIO}=\widehat{AIN}+\widehat{NIO}\)
Mà\(\widehat{MIO}=\widehat{NIO}\)(từ (**) suy ra)
Nên \(\widehat{BIM}=\widehat{AIN}\)
d)Gọi T là giao điểm của MN và tia Oz
Từ (*) suy ra △AIO vuông tại I và △OTN vuông tại T.
nên \(\widehat{AIO}=\widehat{NTO}=90^o\)
△AIO có: \(\widehat{A}+\widehat{AIO}+\widehat{IOA}\) = 180o(tổng ba góc của một tam giác)
△OTN có: \(\widehat{TNO}+\widehat{NTO}+\widehat{TON}\) = 180o(tổng ba góc của một tam giác)
Mà \(\widehat{AIO}=\widehat{NTO}=90^o\)và \(\widehat{IOA}=\widehat{TON}\)
Suy ra \(\widehat{A}=\widehat{TNO}\)
Nên MN//AB
Hình vẽ:
a) Ta có: Oz là tia phân giác của \(\widehat{xOy}\)nên \(\widehat{COA}=\widehat{COB}\)
Xét ΔOAC và ΔOBC có: \(\hept{\begin{cases}OA=OB\left(gt\right)\\\widehat{COA}=\widehat{COB}\left(cmt\right)\\OC.chung\end{cases}}\)=> ΔOAC = ΔOBC (c.g.c)
=> AC = BC (2 cạnh tương ứng)
và \(\widehat{OAC}=\widehat{OBC}\)(2 góc tương ứng)
Ta có: \(\hept{\begin{cases}\widehat{xAC}=\widehat{OAx}-\widehat{OAC}\\\widehat{yBC}=\widehat{OBy}-\widehat{OBC}\end{cases}}\)mà\(\hept{\begin{cases}\widehat{OAx}=\widehat{OBy}\left(=180^o\right)\\\widehat{OAC}=\widehat{OBC}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\widehat{xAC}=\widehat{yBC}\)
b) Gọi H là giao điểm của AB và Ox
Xét ΔOAH và ΔOBH có: \(\hept{\begin{cases}OA=OB\left(gt\right)\\\widehat{COA}=\widehat{COB}\left(cmt\right)\\OH.chung\end{cases}}\)=> ΔOAH = ΔOBH (c.g.c)
=> \(\widehat{OHA}=\widehat{OHB}\)(2 góc tương ứng)
ta có: \(\widehat{AHB}=\widehat{OHA}+\widehat{OHB}=180^o\)mà \(\widehat{OHA}=\widehat{OHB}\)
=> \(\widehat{OHA}+\widehat{OHA}=180^o\Leftrightarrow2\cdot\widehat{OHA}=180^o\Leftrightarrow\widehat{OHA}=90^o\)
=> \(AB\perp Oz\)(đpcm)
Học tốt nha ^3^
giả thiết kết luận đâu bn kẻ hình xong ghi giả thiết, kết luận ms làm chứ
a: Xét ΔOAC và ΔOBC có
OA=OB
góc AOC=góc BOC
OC chung
=>ΔOAC=ΔOBC
=>AC=BC và góc OAC=góc OBC
=>góc xAC=góc yBC
Xét tam giác AOC và tam giác BOC
CÓ + OA=OB(gt)
+ GÓC O: góc chung
+ OC cạnh chung
Vậy tam giác AOC=tam giac BOC(C.G.C)
=> AC=BC( hai góc tương ứng)