K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

cau nay cx hoi dc

25 tháng 11 2019

ngu the

AH
Akai Haruma
Giáo viên
24 tháng 9 2017

Lời giải:

Với $I$ là trung điểm của $BC$ thì \(\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\)

Ta có:

\(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AI}+\overrightarrow{IB}+\overrightarrow{AI}+\overrightarrow{IC}\)

\(=2\overrightarrow{AI}+(\overrightarrow{IB}+\overrightarrow{IC})\)

\(=2\overrightarrow{AI}\)

\(\Rightarrow \overrightarrow{AI}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}\) (đpcm)

b) Gọi giao điểm của $AG$ với $BC$ là $T$

\(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AG}+\overrightarrow{GB}+\overrightarrow{AG}+\overrightarrow{GC}\)

\(=2\overrightarrow{AG}+\overrightarrow{GB}+\overrightarrow{GC}=2\overrightarrow{AG}+\overrightarrow{GI}+\overrightarrow{IB}+\overrightarrow{GI}+\overrightarrow{IC}\)

\(=2\overrightarrow{AG}+2\overrightarrow{GI}\)

Theo tính chất đường trung tuyến thì \(\overrightarrow{AG}=2\overrightarrow{GI}\) nên:

\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AG}+\overrightarrow{AG}=3\overrightarrow{AG}\)

\(\Rightarrow \overrightarrow{AG}=\frac{1}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)

a: vẽ vecto CN=vecto AB

(vecto AB;vecto CA)=(vecto CN;vecto CA)=góc ACN=120 độ

b: (vecto AB;vecto MC)

=(vecto CN;vecto CH)

=góc NCH

=120 độ

 

7 tháng 11 2021

c) \(\overrightarrow{BG}+\overrightarrow{GC}=\overrightarrow{BC}\ne\overrightarrow{GA}\)

d) \(\overrightarrow{GB}+\overrightarrow{GC}=\dfrac{1}{2}\overrightarrow{GM}\ne\overrightarrow{GM}\)

 

18 tháng 11 2022

Bài 2:

Gọi M là trung điểm của AB,N là trung điểm của CD

vecto GA+vecto GB+vecto GC+vecto GD=vecto 0

=>2 vetco GM+2 vecto GN=vecto 0

=>vecto GM+vecto GN=vecto 0

=>G là trung điểm của MN

b: \(\left|\overrightarrow{GB}\right|=GB=GA=\dfrac{2}{3}\cdot\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)

c: \(\left|\overrightarrow{GA}+\overrightarrow{GB}\right|\)

\(=\sqrt{GA^2+GB^2+2\cdot GA\cdot GB\cdot cos\left(GA,GB\right)}\)

\(=\sqrt{2\cdot\left(\dfrac{a\sqrt{3}}{3}\right)^2+2\cdot\dfrac{a\sqrt{3}}{3}\cdot\dfrac{a\sqrt{3}}{3}\cdot\dfrac{-1}{2}}\)

\(=\sqrt{2\cdot\dfrac{1}{3}\cdot a^2-\dfrac{a^2}{3}}=\sqrt{\dfrac{a^2}{3}}\)

2 tháng 12 2019

toán lớp mấy đó bạn

2 tháng 12 2019

Mình giải được rồi nheeee

NV
21 tháng 8 2020

\(\overrightarrow{BI}=\overrightarrow{BC}+\overrightarrow{CI}=\overrightarrow{BC}-\frac{1}{2}\overrightarrow{AB}\)

\(\overrightarrow{BG}=\frac{1}{3}\left(\overrightarrow{BI}+\overrightarrow{BC}\right)=\frac{1}{3}\left(\overrightarrow{BC}-\frac{1}{2}\overrightarrow{AB}+\overrightarrow{BC}\right)=\frac{2}{3}\overrightarrow{BC}-\frac{1}{6}\overrightarrow{AB}\)

\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}=\overrightarrow{AB}+\frac{2}{3}\overrightarrow{BC}-\frac{1}{6}\overrightarrow{AB}=\frac{5}{6}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{BC}=\frac{5}{6}\overrightarrow{a}+\frac{2}{3}\overrightarrow{b}\)

23 tháng 4 2018

a) Áp dụng định lý Pitago trong tam giác vuông ABC, ta có: 

 BC2 = AC2 + AB2

252 = 152 + AB2 \(\Rightarrow ab=20\left(cm\right)\)

Xét tam giác ABC có:

  AC < AB < BC nên \(\widehat{CBA}< \widehat{BCA}< \widehat{BAC}.\)

b)  Xét tam giác vuông EHA và tam giác vuông EHC có:

Cạnh EH chung

HC = HA

\(\Rightarrow\Delta EHC=\Delta EHA\)  (Hai cạnh góc vuông)

Do \(\Delta EHC=\Delta EHA\Rightarrow\widehat{ECA}=\widehat{EAC}\)

\(\Rightarrow\widehat{EBA}=\widehat{EAB}\)    (Cùng phụ với hai góc bên trên)

Vậy nên tam giác EAB cân tại E.

c) Tam giác CBN cân tại C có CA là đường cao nên CA đồng thời là trung tuyến. 

Xét tam giác CBN có CA và BF là các đường trung tuyến mà CA giao BF tại G nên G là trọng tâm tam giác.

Theo tính chất trọng tâm ta có:

\(\frac{AG}{AC}=\frac{1}{3}\Rightarrow AG=\frac{1}{5}.15=5\left(cm\right)\)

d) Xét tam giác CBN cân tại C có CA là đường cao nên đồng thời là phân giác.

Gọi giao điểm của EH với CN là F'. Khi đó ta có \(\Delta ECH=\Delta F'CH\)   (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow CE=CF'\)

Lại có \(CE=\frac{1}{2}BC=\frac{1}{2}CN\Rightarrow CF'=\frac{1}{2}CN\)

Suy ra F' là trung điểm CN hay F' trùng F.

Vậy nên E, H, FA thẳng hàng.

17 tháng 8 2018

Bài giải : 

a) Áp dụng định lý Pitago trong tam giác vuông ABC, ta có: 

 BC2 = AC2 + AB2

252 = 152 + AB2 ⇒ab=20(cm)

Xét tam giác ABC có:

  AC < AB < BC nên ^CBA<^BCA<^BAC.

b)  Xét tam giác vuông EHA và tam giác vuông EHC có:

Cạnh EH chung

HC = HA

⇒ΔEHC=ΔEHA  (Hai cạnh góc vuông)

Do ΔEHC=ΔEHA⇒^ECA=^EAC

⇒^EBA=^EAB    (Cùng phụ với hai góc bên trên)

Vậy nên tam giác EAB cân tại E.

c) Tam giác CBN cân tại C có CA là đường cao nên CA đồng thời là trung tuyến. 

Xét tam giác CBN có CA và BF là các đường trung tuyến mà CA giao BF tại G nên G là trọng tâm tam giác.

Theo tính chất trọng tâm ta có:

AGAC =13 ⇒AG=15 .15=5(cm)

d) Xét tam giác CBN cân tại C có CA là đường cao nên đồng thời là phân giác.

Gọi giao điểm của EH với CN là F'. Khi đó ta có ΔECH=ΔF'CH   (Cạnh góc vuông và góc nhọn kề)

⇒CE=CF'

Lại có CE=12 BC=12 CN⇒CF'=12 CN

Suy ra F' là trung điểm CN hay F' trùng F.

Vậy nên E, H, FA thẳng hàng.