giải hệ phương trình: \(\left\{{}\begin{matrix}2x^2-4xy+y^2=-1\\3x^2+2xy+2y^2=7\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DK:\(y\ne0\)
PT (1) :\(3x^2+2y^2-4xy=11-\dfrac{1}{y}\left(2x+\dfrac{1}{y}\right)\)
\(\Leftrightarrow\left(x^2+\dfrac{2x}{y}+\dfrac{1}{y^2}\right)+2\left(x^2-2xy+y^2\right)=11\)
\(\Leftrightarrow\left(x+\dfrac{1}{y}\right)^2+2\left(x-y\right)^2=11\)
PT (2): \(2x+\dfrac{1}{y}-y=4\)
\(\Leftrightarrow\left(x+\dfrac{1}{y}\right)+\left(x-y\right)=4\)
Đặt \(a=x+\dfrac{1}{y};b=x-y\)
Hệ pt tt: \(\left\{{}\begin{matrix}a^2+2b^2=11\\a+b=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(4-b\right)^2+2b^2=11\\a=4-b\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}b=\dfrac{5}{3}\\b=1\end{matrix}\right.\\a=4-b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}b=\dfrac{5}{3}\\a=\dfrac{7}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}b=1\\a=3\end{matrix}\right.\end{matrix}\right.\)
TH1: \(a=\dfrac{7}{3};b=\dfrac{5}{3}\)\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{y}=\dfrac{7}{3}\\x-y=\dfrac{5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}+y=\dfrac{2}{3}\\x-y=\dfrac{5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y^2-2y+3=0\left(vn\right)\\x-y=\dfrac{5}{3}\end{matrix}\right.\)
TH2:\(a=3;b=1\)\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{y}=3\\x-y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}+y=2\\x-y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y^2-2y+1=0\\x-y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\) (thỏa mãn hệ)
Vậy hệ có nghiệm duy nhất (x;y)=(2;1).
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)
1. \(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\8x-4y=-44\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\11x=-33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=-3\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=0\\4x+2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-2\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+5y=18\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=12\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Đề bài chắc sai bạn:
\(2x^2+y^2+1=2xy\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+x^2+1=0\)
\(\Leftrightarrow\left(x-y\right)^2+x^2+1=0\) (vô lý)
Hệ vô nghiệm
a.
\(\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)
Nhân vế:
\(-4\left(x^3-y^3\right)=\left(16x-4y\right)\left(5x^2-y^2\right)\)
\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)
\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4y}{7}\\y=-3x\end{matrix}\right.\)
Thế vào \(y^2=5x^2+4...\)
b. Đề bài không hợp lý ở \(4x^2\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)
Trừ vế:
\(x^3-y^3-3x^2-6y^2=9-3x+12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\)
\(\Leftrightarrow y=x-3\)
Thế vào \(x^2=2y^2=x-4y\) ...
a.
\(2x^3-x^2y+x^2+y^2-2xy-y=0\)
\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)
Thế vào pt đầu:
\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
\(x^2-2xy+x=-y\)
Thế vào \(y^2\) ở pt dưới:
\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)
\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)
\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)
\(\Leftrightarrow-2y+4y^2-8y+4=0\)
\(\Leftrightarrow...\)
\(\Leftrightarrow\left\{{}\begin{matrix}14x^2-28x+7y^2=-7\\3x^2+2xy+2y^2=7\end{matrix}\right.\)
\(\Rightarrow17x^2-26xy+9y^2=0\Rightarrow\left(x-y\right)\left(17x-9y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\x=\frac{9}{17}y\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x^2-4x^2+x^2=-1\\2x^2-4.\frac{9}{17}x^2+\left(\frac{9}{17}x\right)^2=-1\end{matrix}\right.\)
Bạn tự giải nốt