K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có \(a-b|P\left(a\right)-P\left(b\right).màP\left(b\right)=-1\) nên suy ra \(\left[{}\begin{matrix}a-b=1\\a-b=-1\end{matrix}\right.\)

tương tự ta cũng được \(\left[{}\begin{matrix}c-b=1\\c-b=-1\end{matrix}\right.\) rõ ràng a≠c(do P(a)≠P(a)) nên a-b≠c-b

từ đây ta được

\(\left[{}\begin{matrix}a-b=1\\c-b=-1\end{matrix}\right.V\left[{}\begin{matrix}a-b=-1\\c-b=1\end{matrix}\right.\)

suy ra \(a+c=2b\) 

vậy ta được đpcm

27 tháng 8 2021

mk ko hiểu lắm bạn ơi

 

4 tháng 7 2018

Ta có

\(A=3x^4+11x^3-7x^2-2x+1\)có tận cùng là 1

\(1=1\cdot1=-1\cdot\left(-1\right)\)

\(\Rightarrow3x^4+11x^3-7x^2-2x+1=\left(ax+1\right)\left(bx^3+cx^2+dx+1\right)\)

Vì \(3=1\cdot3=\left(-1\right)\cdot\left(-3\right)\)

=> Ta thấy A=1 hoặc A=-1 là không thể

=> A=-3 hoặc A=3

Đặt phép tính cho từng trường hợp ta được

\(3x^4+11x^3-7x^2-2x+1=\left(-3x+1\right)\left(-x^3-4x^2+x+1\right)\)