Bài toán :
Rút gọn biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định : \(x\ge0;y\ge0;\sqrt{x}-\sqrt{y}\ne-3\)
Ta có : \(\frac{x-y+3\sqrt{x}+3\sqrt{y}}{\sqrt{x}-\sqrt{y}+3}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+3\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}+3}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+3\right)}{\sqrt{x}-\sqrt{y}+3}=\sqrt{x}+\sqrt{y}\)
\(a,B=4\sqrt{x=1}-3\sqrt{x+1}+2\)\(\sqrt{x+1}+\sqrt{x+1}\)
\(=4\sqrt{x+1}\)
\(b,\)đưa về \(\sqrt{x+1}=4\Rightarrow x=15\)
a, Với \(x\ge-1\)
\(\Rightarrow B=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)
\(=4\sqrt{x+1}\)
b, Ta có B = 16 hay
\(4\sqrt{x+1}=16\Leftrightarrow\sqrt{x+1}=4\)bình phương 2 vế ta được
\(\Leftrightarrow x+1=16\Leftrightarrow x=15\)
Câu 1:
a. \(\sqrt{x+2}\) có nghĩa khi \(x+2\ge0\Leftrightarrow x\ge-2\)
Vậy biểu thức \(\sqrt{x+2}\) có nghĩa khi \(x\ge-2\)
b. \(\left\{{}\begin{matrix}2x+y=5\\x+2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+4y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=3\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất (x; y) = (2; 1)
c. \(A=\left(\dfrac{3}{x-3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right).\dfrac{x-9}{\sqrt{x}}\left(x>0;x\ne9\right)\)
\(=\left[\dfrac{3\left(\sqrt{x}+3\right)}{\sqrt{x}\left(x-9\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}\left(x-9\right)}\right].\dfrac{x-9}{\sqrt{x}}\)
\(=\dfrac{3\sqrt{x}+9+x-3\sqrt{x}}{\sqrt{x}\left(x-9\right)}.\dfrac{x-9}{\sqrt{x}}\)
\(=\dfrac{x+9}{\sqrt{x}\left(x-9\right)}.\dfrac{x-9}{\sqrt{x}}\)
\(=\dfrac{x+9}{x}\)
\(3\sqrt{8}-\sqrt{50}-\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=6\sqrt{2}-5\sqrt{2}-\left(\sqrt{2}-1\right)\)
\(=\sqrt{2}-\sqrt{2}+1\)
\(=1\)
biểu thức nào?
biểu thức đâu?
biểu thức ÙwÚ
máy lỗi