K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

\(3\sqrt[3]{x-3}+4\sqrt[3]{8x-24}-\frac{1}{3}\sqrt[3]{27x-81}=3\sqrt[3]{x-3}+4\sqrt[3]{8\left(x-3\right)}-\frac{1}{3}\sqrt[3]{27\left(x-3\right)}=3\sqrt[3]{x-3}+4.2.\sqrt[3]{x-3}-\frac{1}{3}.3.\sqrt[3]{x-3}=3\sqrt[3]{x-3}+8\sqrt[3]{x-3}-\sqrt[3]{x-3}=10.\sqrt[3]{x-3}=-20\Leftrightarrow\sqrt[3]{x-3}=-2\Leftrightarrow x-3=-8\Leftrightarrow x=-5\)

8 tháng 3 2016

Giải phương trình không có vế phải thì giải bằng niềm tin à bạn?

21 tháng 1 2018

a) [x(x+1].[(x-1)(x+2)]=24

(x2+x)(x2+x+2)=24

Dat x2+x=a , ta dc: a(a+2)=24

=> a2+2a-24=0

=> (a-4)(a+6)=0

=> a=4 hoac a=-6

Thay vao roi tu tim x nha

b)

24 tháng 1 2018

thanks

4 tháng 3 2019

Với dạng bài này ta chỉ việc chia hoocne là ra nhé!

\(C1:x^4+x^3-8x^2-9x-9=0\\ \Leftrightarrow\left(x-3\right)\left(x^3+4x^2+4x+3\right)\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+x+1\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x^2+x+1=0\left(VN\right)\end{matrix}\right.\)

\(C2:x^4+2x^3-3x^2-8x-4=0\\ \Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)

4 tháng 3 2019
https://i.imgur.com/1LBiPm6.jpg
AH
Akai Haruma
Giáo viên
17 tháng 8 2018

Lời giải:

\((x^3-x^2)-4x^2+8x-4=0\)

\(\Leftrightarrow x^2(x-1)-4(x^2-2x+1)=0\)

\(\Leftrightarrow x^2(x-1)-4(x-1)^2=0\)

\(\Leftrightarrow (x-1)[x^2-4(x-1)]=0\)

\(\Leftrightarrow (x-1)(x^2-4x+4)=0\)

\(\Leftrightarrow (x-1)(x-2)^2=0\)

\(\Rightarrow \left[\begin{matrix} x=1\\ x=2\end{matrix}\right.\)

14 tháng 2 2018

Tham khảo tại đây:

Câu hỏi của Ngg Ynn Nhii - Toán lớp 8 - Học toán với OnlineMath

14 tháng 2 2018

đặt ẩn phụ y = x(x+1) = x^2 +x => (x-1)(x+2)= x^2+x+2 = y+2
giải pt y ( y+2) = 24 rồi thay vào y = x(x+1) để tính x

23 tháng 3 2019

a) \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{3x-102}{3x-24}\) \(ĐK:x\ne8\)

\(\Leftrightarrow\frac{3}{2\left(x-8\right)}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{3x-102}{3\left(x-8\right)}\)

\(\Leftrightarrow\frac{3.3}{6.\left(x-8\right)}+\frac{6.\left(3x-20\right)}{6\left(x-8\right)}-\frac{2\left(3x-102\right)}{6\left(x-8\right)}=\frac{-1}{8}\)

\(\Leftrightarrow\frac{9+18x-120-6x+204}{6\left(x-8\right)}=\frac{-1}{8}\)

\(\Leftrightarrow\frac{12x+93}{6\left(x-8\right)}=\frac{-1}{8}\)

\(\Leftrightarrow8\left(12x+93\right)=-6\left(x-8\right)\)

\(\Leftrightarrow96x+744=-6x+48\)

\(\Leftrightarrow102x=-696\)

\(\Leftrightarrow x=\frac{-116}{17}\) (nhận)

Vậy .....

b) \(\frac{1}{3-x}+\frac{14}{x^2-9}=\frac{x-4}{3+x}+\frac{7}{3+x}\) \(ĐK:x\ne\pm3\)

\(\Leftrightarrow\frac{1}{3-x}+\frac{14}{\left(x-3\right)\left(3+x\right)}=\frac{x-4}{3+x}+\frac{7}{3+x}\)

\(\Leftrightarrow-\frac{3+x}{\left(x-3\right)\left(3+x\right)}+\frac{14}{\left(x-3\right)\left(3+x\right)}=\frac{\left(x-4\right)\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}+\frac{7\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}\)

\(\Leftrightarrow\frac{-3-x+14}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x-4\right)\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}+\frac{7\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}\)

\(\Leftrightarrow-3-x+14=x^2-3x-4x+12+7x-21\)

\(\Leftrightarrow x=-5\) (nhận)

Vậy ....