Cho x tỉ lệ thuận với y theo hệ số tỉ lệ k=2, y tỉ lệ nghịch với z theo hệ số tỉ lệ a=3. Tìm x,y,z biết x+y=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x tỉ lệ nghịch với y theo hệ số tỉ lệ k nên xy=k
y tỉ lệ thuận với z theo hệ số tỉ lệ a nên y=az
=>\(az=\dfrac{k}{x}\)
=>azx=k
=>zx=k/a
Vậy: z tỉ lệ nghịch với x theo hệ số k/a
b: x tỉ lệ nghịch với y theo hệ số k nên xy=k
y tỉ lệ nghịch với z theo hệ số a nên yz=a
\(\Leftrightarrow\dfrac{k}{x}\cdot z=a\)
=>\(\dfrac{kx}{z}=a\)
=>x/z=k/a
\(\Leftrightarrow x=\dfrac{k}{a}\cdot z\)
Vậy: x tỉ lệ thuận với z theo hệ số k/a
c: x tỉ lệ thuận với y theo hệ số k nên x=ky
y tỉ lệ thuận với z theo hệ số a nên y=az
\(\Leftrightarrow az=\dfrac{x}{k}\)
=>x=akz
=>x tỉ lệ thuận với z theo hệ số ak
a: xy=k
nên y=x/k
yz=1
nên \(\dfrac{x}{k}\cdot z=1\)
=>xz=k
Vậy: x tỉ lệ nghịch với z theo hệ số tỉ lệ k
b: xy=k
y=z
nên x/k=z
=>x=kz
Vậy: x tỉ lệ thuận với z theo hệ số tỉ lệ k
c: x=ky
nên y=x/k
yz=1
nên \(\dfrac{xz}{k}=1\)
=>xz=k
Vậy: x tỉ lệ nghịch với z theo hệ số tỉ lệ k
z tỉ lệ thuận với y theo hệ số tỉ lệ 2
\(\Rightarrow z=2y\)
y tỉ lệ nghịch với x theo hệ số tỉ lệ 3
\(\Rightarrow y=\dfrac{3}{x}\)
Do đó:
\(z=2\left(\dfrac{3}{x}\right)\)
\(z=\dfrac{2\cdot3}{x}=\dfrac{6}{x}\)
Vì \(z=\dfrac{6}{x}\) nên z tỉ lệ nghịch với x theo hệ số tỉ lệ là 6, ta chọn D.
3)
Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ 0,8 nên xy=0,8 (1)
x tỉ lệ nghịch với z theo hệ số tỉ lệ 0,5 nên xz=0,5 (2)
Từ (1) và (2) suy ra xy/xz=0,8*0,5 hay y/z=0,4 suy ra y=0,4*z
Vậy y tỉ lệ thuận với z theo hệ số tỉ lệ là 0,4
a: x=2y
nên y=2/x
yz=-3
\(\Leftrightarrow z\cdot\dfrac{2}{x}=-3\)
\(\Leftrightarrow2z=-3x\)
Ta có: \(\frac{x}{y}=2\)và x + y = 6
ADTCDTSBN:
\(\frac{x}{2}=\frac{y}{1}=\frac{6}{2+1}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.2=4\\y=2.1=2\end{cases}}\)
Mà y tỉ lệ nghịch với z theo hệ số tỉ lệ a=3 nên yz = 3
\(\Rightarrow z=\frac{3}{2}\)
phải là x/1=y/2 chứ không phải là x/2=y/1