K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2019

Toán học is my best:)) nâng cao chỗ nào bạn ?

\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\)

\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

P/s : Lê Đức Anh làm tắt thế !

19 tháng 11 2019

a5 + 2-1?????
a5+ 2+2+1?????

29 tháng 3 2016

A=(a3+a2)+(a2-1) phan ( a3+a2)+a2+(a+1)=a2(a+1)+(a+1) phan a2( a+1)+(a(a+1)+(a+1)=

(a+1(a2+a-1) phan a+1) a2+a+1)=a2+a-1 phan a2+a-1

b) gọi d = ƯCLN (a2 + a - 1; a2 + a +1 )

=> a2 + a -  1 chia hết cho d

a2 + a +1 chia hết cho d

=> (a2 + a + 1) - (a2 + a - 1) chia hết cho d => 2 chia hết cho d 

=> d = 1 hoặc d = 2

Nhận xét: a2 + a -1 = a.(a+1) - 1 . Với số nguyên a ta có a(a+1) là tích 2 số nguyên liên tiếp => a.(a+1) chia hết cho 2

=> a(a+1) - 1 lẻ => a2 + a - 1 lẻ

=> d không thể = 2

Vậy d = 1 => đpcm

a2 nghi la: \(a^2\)

29 tháng 3 2016

A=(a3+a2)+(a2-1) phan ( a3+a2)+a2+(a+1)=a2(a+1)+(a+1) phan a2( a+1)+(a(a+1)+(a+1)=

(a+1(a2+a-1) phan a+1) a2+a+1)=a2+a-1 phan a2+a-1

b) gọi d = ƯCLN (a2 + a - 1; a2 + a +1 )

=> a2 + a -  1 chia hết cho d

a2 + a +1 chia hết cho d

=> (a2 + a + 1) - (a2 + a - 1) chia hết cho d => 2 chia hết cho d 

=> d = 1 hoặc d = 2

Nhận xét: a2 + a -1 = a.(a+1) - 1 . Với số nguyên a ta có a(a+1) là tích 2 số nguyên liên tiếp => a.(a+1) chia hết cho 2

=> a(a+1) - 1 lẻ => a2 + a - 1 lẻ

=> d không thể = 2

Vậy d = 1 => đpcm

a2 nghi la: \(a^2\)

Ta có: \(1+\left(\dfrac{2a+\sqrt{a}-1}{1-a}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\cdot\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)

\(=1+\left(\dfrac{-2\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\cdot\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)

\(=1+\left(\dfrac{-\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)+\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\dfrac{\left(2\sqrt{a}-1\right)\left(-a-\sqrt{a}-1+a+\sqrt{a}\right)}{a+\sqrt{a}+1}\cdot\dfrac{\sqrt{a}}{2\sqrt{a}-1}\)

\(=1+\dfrac{-\sqrt{a}}{a+\sqrt{a}+1}\)

\(=\dfrac{a+\sqrt{a}+1-\sqrt{a}}{a+\sqrt{a}+1}\)

\(=\dfrac{a+1}{a+\sqrt{a}+1}\)

11 tháng 4 2017

Giải:Ta có:\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

\(=>A=\frac{\left(a+1\right).\left(a^2+a-1\right)}{\left(a+1\right).\left(a^2+a+1\right)}\)

\(=>A=\frac{a^2+a-1}{a^2+a+1}\)

\(=>A=\frac{-1}{1}\)

tk gium minh nha neu thay dung nha!

23 tháng 2 2020

a)

A= (-m+n-p)-(-m-n-p)

A= -m+n-p+m+n+p

A= (-m+m) +(n+n) + (-p+p)

A= 0+2n+0

A = 2n

23 tháng 2 2020

Bài 1: 

A = (-m + n - p) - (-m - n - p)

A = -m + n - p + m + n + p

A = (-m + m) + (n + n) - (p - p)

A = 2n

Với n = -1 => A = 2(-1) = -2

Bài 2: 

A = (-2a + 3b - 4c) - (-2a -3b - 4c)

A = -2a + 3b - 4c + 2a + 3b + 4c

A = (-2a + 2a) + (3b + 3b) - (4c - 4c)

A = 6b

Với b = -1 => A = 6(-1) = -6

Bài 3:

a) A = (a + b) - (a - b) + (a - c) - (a + c)

A= a + b - a + b + a - c - a - c

A = (a - a + a - a) + (b + b) - (c + c)

A = 2(b - c)

b) B = (a + b - c) + (a - b + c) - (b + c - a) - (a - b - c)

B = a + b - c + a - b + c - b - c + a - a + b + c

B = (a + a + a - a) + (b - b - b + b) - (c - c + c - c)

B = 2a

2 tháng 2 2018

Ta có \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

\(=\frac{a^3+2a^2+2a+1-2a-2}{a^3+2a^2+2a+1}\)

\(=\frac{a^3+2a^2+2a+1}{a^3+2a^2+2a+1}-\frac{2a-2}{a^3+2a^2+2a+1}\)

\(=1-\frac{2a-1}{a^3+2a^2+2a+1}\)