K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2019

Bài này định làm từ sáng trong tiết tin mà hết h, thế là đang lm dở phải tắt đi, chán

Xét \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{IA}+\overrightarrow{AK}=\overrightarrow{0}\) (K là trung điểm của BC)

Chèn I vào vế trái

\(2\left|3\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}\right|=6\left|\overrightarrow{MI}\right|=6MI\)

VP:

\(3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|2\overrightarrow{MJ}\right|=6\left|\overrightarrow{MJ}\right|=6MJ\) (J là trung điểm BC)

\(\Rightarrow MI=MJ\)

=> tập hợp các điểm M thuộc đường trung trực của IJ sao cho \(\left\{{}\begin{matrix}\overrightarrow{IA}=\frac{1}{3}\overrightarrow{KA}\\\overrightarrow{KB}=\overrightarrow{CK}\\\overrightarrow{JB}=\overrightarrow{CJ}\end{matrix}\right.\)

6 tháng 2 2020

một đường tròn

AH
Akai Haruma
Giáo viên
14 tháng 8 2021

Lời giải:

a.

\(|\overrightarrow{MC}|=|\overrightarrow{MA}-\overrightarrow{MB}|=|\overrightarrow{BA|}\)

Tập hợp điểm $M$ thuộc đường tròn tâm $C$ đường bán kính $AB$

b. Gọi $I$ là trung điểm $AB$. Khi đó:

\(|\overrightarrow{MA}+\overrightarrow{MB}|=|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}|\)

\(=|2\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}|=|2\overrightarrow{MI}|=0\)

\(\Leftrightarrow |\overrightarrow{MI}|=0\Leftrightarrow M\equiv I\)

Vậy điểm $M$ là trung điểm của $AB$

 

 

AH
Akai Haruma
Giáo viên
14 tháng 8 2021

c.

Trên tia đối của tia $CA$ lấy $K$ sao cho $KC=\frac{1}{3}CA$

\(|\overrightarrow{MA}|=2|\overrightarrow{MC}|\Leftrightarrow |\overrightarrow{MK}+\overrightarrow{KA}|=2|\overrightarrow{MK}+\overrightarrow{KC}|\)

\(\Leftrightarrow |\overrightarrow{MK}+4\overrightarrow{KC}|=|2\overrightarrow{MK}+2\overrightarrow{KC}|\)

\(\Leftrightarrow (\overrightarrow{MK}+4\overrightarrow{KC})^2=(2\overrightarrow{MK}+2\overrightarrow{KC})^2\)

\(\Leftrightarrow MK^2+16KC^2=4MK^2+4KC^2\)

\(\Leftrightarrow 12KC^2=3MK^2\Leftrightarrow MK=2KC=\frac{2}{3}AC\)

Vậy $M$ thuộc đường tròn tâm $K$ bán kính $\frac{2}{3}AC$

 

NV
26 tháng 11 2021

Qua A dựng đường thẳng d song song BC, trên d lấy điểm I sao cho \(\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{BC}\)

\(\Rightarrow3\overrightarrow{IA}=2\overrightarrow{BC}\Rightarrow3\overrightarrow{IA}+2\overrightarrow{CB}=\overrightarrow{0}\)

Ta có:

\(\left|3\overrightarrow{MA}+2\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MA}+2\left(\overrightarrow{MB}+\overrightarrow{CM}\right)\right|=\left|\overrightarrow{MB}+\overrightarrow{CM}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MA}+2\overrightarrow{CB}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MI}+3\overrightarrow{IA}+2\overrightarrow{CB}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow\left|3\overrightarrow{MI}\right|=\left|\overrightarrow{CB}\right|\)

\(\Leftrightarrow MI=\dfrac{1}{3}BC\)

Tập hợp M là đường tròn tâm I bán kính \(\dfrac{BC}{3}\)

12 tháng 1 2021

Gọi G là trọng tâm ΔABC

⇒ VT = 6MG

VP  = \(\left|2\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)+\overrightarrow{MC}-\overrightarrow{MA}\right|\)

VP = \(\left|6\overrightarrow{MG}+\overrightarrow{AC}\right|\)

Xác định điểm I sao cho \(6\overrightarrow{IG}+\overrightarrow{AC}=\overrightarrow{0}\) (cái này chắc bạn làm được)

VP = \(\left|6\overrightarrow{MI}+6\overrightarrow{IG}+\overrightarrow{AC}\right|\)

VP = 6 MI

Khi VT = VP thì MG = MI

⇒ M nằm trên đường trung trực của IG

Tập hợp các điểm M : "Đường trung trực của IG"