cho tam giác ABC tìm tập hợp điểm M thỏa mãn \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
\(|\overrightarrow{MC}|=|\overrightarrow{MA}-\overrightarrow{MB}|=|\overrightarrow{BA|}\)
Tập hợp điểm $M$ thuộc đường tròn tâm $C$ đường bán kính $AB$
b. Gọi $I$ là trung điểm $AB$. Khi đó:
\(|\overrightarrow{MA}+\overrightarrow{MB}|=|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}|\)
\(=|2\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}|=|2\overrightarrow{MI}|=0\)
\(\Leftrightarrow |\overrightarrow{MI}|=0\Leftrightarrow M\equiv I\)
Vậy điểm $M$ là trung điểm của $AB$
c.
Trên tia đối của tia $CA$ lấy $K$ sao cho $KC=\frac{1}{3}CA$
\(|\overrightarrow{MA}|=2|\overrightarrow{MC}|\Leftrightarrow |\overrightarrow{MK}+\overrightarrow{KA}|=2|\overrightarrow{MK}+\overrightarrow{KC}|\)
\(\Leftrightarrow |\overrightarrow{MK}+4\overrightarrow{KC}|=|2\overrightarrow{MK}+2\overrightarrow{KC}|\)
\(\Leftrightarrow (\overrightarrow{MK}+4\overrightarrow{KC})^2=(2\overrightarrow{MK}+2\overrightarrow{KC})^2\)
\(\Leftrightarrow MK^2+16KC^2=4MK^2+4KC^2\)
\(\Leftrightarrow 12KC^2=3MK^2\Leftrightarrow MK=2KC=\frac{2}{3}AC\)
Vậy $M$ thuộc đường tròn tâm $K$ bán kính $\frac{2}{3}AC$
Qua A dựng đường thẳng d song song BC, trên d lấy điểm I sao cho \(\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{BC}\)
\(\Rightarrow3\overrightarrow{IA}=2\overrightarrow{BC}\Rightarrow3\overrightarrow{IA}+2\overrightarrow{CB}=\overrightarrow{0}\)
Ta có:
\(\left|3\overrightarrow{MA}+2\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MA}+2\left(\overrightarrow{MB}+\overrightarrow{CM}\right)\right|=\left|\overrightarrow{MB}+\overrightarrow{CM}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MA}+2\overrightarrow{CB}\right|=\left|\overrightarrow{CB}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MI}+3\overrightarrow{IA}+2\overrightarrow{CB}\right|=\left|\overrightarrow{CB}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MI}\right|=\left|\overrightarrow{CB}\right|\)
\(\Leftrightarrow MI=\dfrac{1}{3}BC\)
Tập hợp M là đường tròn tâm I bán kính \(\dfrac{BC}{3}\)
Gọi G là trọng tâm ΔABC
⇒ VT = 6MG
VP = \(\left|2\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)+\overrightarrow{MC}-\overrightarrow{MA}\right|\)
VP = \(\left|6\overrightarrow{MG}+\overrightarrow{AC}\right|\)
Xác định điểm I sao cho \(6\overrightarrow{IG}+\overrightarrow{AC}=\overrightarrow{0}\) (cái này chắc bạn làm được)
VP = \(\left|6\overrightarrow{MI}+6\overrightarrow{IG}+\overrightarrow{AC}\right|\)
VP = 6 MI
Khi VT = VP thì MG = MI
⇒ M nằm trên đường trung trực của IG
Tập hợp các điểm M : "Đường trung trực của IG"
Bài này định làm từ sáng trong tiết tin mà hết h, thế là đang lm dở phải tắt đi, chán
Xét \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{IA}+\overrightarrow{AK}=\overrightarrow{0}\) (K là trung điểm của BC)
Chèn I vào vế trái
\(2\left|3\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}\right|=6\left|\overrightarrow{MI}\right|=6MI\)
VP:
\(3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|2\overrightarrow{MJ}\right|=6\left|\overrightarrow{MJ}\right|=6MJ\) (J là trung điểm BC)
\(\Rightarrow MI=MJ\)
=> tập hợp các điểm M thuộc đường trung trực của IJ sao cho \(\left\{{}\begin{matrix}\overrightarrow{IA}=\frac{1}{3}\overrightarrow{KA}\\\overrightarrow{KB}=\overrightarrow{CK}\\\overrightarrow{JB}=\overrightarrow{CJ}\end{matrix}\right.\)