K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 11 2019

Nhận thấy \(x=y=z=0\) là 1 nghiệm

Với \(x;y;z\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}=\frac{5}{12}\\\frac{1}{y}+\frac{1}{z}=\frac{5}{18}\\\frac{1}{z}+\frac{1}{x}=\frac{13}{36}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}=\frac{1}{4}\\\frac{1}{y}=\frac{1}{6}\\\frac{1}{z}=\frac{1}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=6\\z=9\end{matrix}\right.\)

Vậy hệ có 2 bộ nghiệm \(\left(x;y;z\right)=\left(0;0;0\right);\left(4;6;9\right)\)

16 tháng 2 2022

\(hpt\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\5yz=6\left(y+z\right)\\4zx=3\left(x+z\right)\end{matrix}\right.\)\(\Rightarrow x=y=z=0\) \(là\) \(nghiệm\)

\(x=y=z\ne0\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2\left(x+y\right)}{2xy}=\dfrac{3xy}{2xy}\\\dfrac{6\left(y+z\right)}{6yz}=\dfrac{5yz}{6yz}\\\dfrac{3\left(x+z\right)}{3zx}=\dfrac{4xz}{3zx}\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{6}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{4}{3}\end{matrix}\right.\)\(ddặt\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\b+c=\dfrac{5}{6}\\a+c=\dfrac{4}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1=\dfrac{1}{x}\Leftrightarrow x=1\left(tm\right)\\b=\dfrac{1}{2}=\dfrac{1}{y}\Leftrightarrow y=2\left(tm\right)\\c=\dfrac{1}{3}\Leftrightarrow z=3\left(tm\right)\end{matrix}\right.\)

 

16 tháng 2 2022

TK

Hệ có nghiệm là x = y = z = 0

Với xyz ≠ 0 thì (I) được viết lại

\(\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{3}{2}\\\dfrac{y+z}{yz}=\dfrac{5}{6}\\\dfrac{z+x}{zx}=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left(II\right)\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{6}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{4}{3}\end{matrix}\right.\)

Cộng 3 phương trình của hệ (II) theo vế ta được

\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{11}{3}\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{11}{6}\)

Trừ phương trình trên cho từng phương trình của hệ (II) theo vế ta lần lượt có \(x=1,y=2,z=3\)

Vậy hệ phương trình có hai nghiệm \(\left(0;0;0\right)\&\left(1;2;3\right)\)

6 tháng 10 2019

Dễ thấy tập nghiệm \(\left(x;y;z\right)=\left(0;0;0\right)\) thỏa mãn.

Xét \(xyz\ne0\), hệ tương đương với :

\(\left\{{}\begin{matrix}\frac{x+y}{xy}=\frac{5}{6}\\\frac{y+z}{yz}=\frac{7}{12}\\\frac{x+z}{xz}=\frac{3}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}=\frac{5}{6}\left(1\right)\\\frac{1}{y}+\frac{1}{z}=\frac{7}{12}\left(2\right)\\\frac{1}{x}+\frac{1}{z}=\frac{3}{4}\left(3\right)\end{matrix}\right.\)

\(2\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{5}{6}+\frac{7}{12}+\frac{3}{4}=\frac{13}{6}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{13}{12}\)

+) Từ (1) suy ra \(\frac{1}{z}=\frac{13}{12}-\frac{5}{6}=\frac{1}{4}\Leftrightarrow z=4\)

+) Từ (2) suy ra \(\frac{1}{x}=\frac{13}{12}-\frac{7}{12}=\frac{1}{2}\Leftrightarrow x=2\)

+) Từ (3) suy ra \(\frac{1}{y}=\frac{13}{12}-\frac{3}{4}=\frac{1}{3}\Leftrightarrow y=3\)

Vậy tập nghiệm của hệ là \(\left(x;y;z\right)\in\left\{\left(0;0;0\right);\left(2;3;4\right)\right\}\)

8 tháng 11 2018

axy là gì vậy

a: Sửa đề: 

\(\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\4yz=3\left(y+z\right)\\5xz=6\left(z+x\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{3}{2}\\\dfrac{y+z}{yz}=\dfrac{4}{3}\\\dfrac{x+z}{xz}=\dfrac{5}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{4}{3}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{3}{2}\\\dfrac{1}{y}=1\\\dfrac{1}{z}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{2}{3};y=1;z=3\)

b: Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}=\dfrac{7x-3y+2z}{7\cdot4-3\cdot3+2\cdot9}=\dfrac{37}{37}=1\)

=>x=4; y=3; z=9

 

2 tháng 2 2021

pt sau của bạn bị thiếu thì phải

 

14 tháng 2 2021

\(\left\{{}\begin{matrix}\left(x+1\right)\left(x^2+1\right)=y^3+1\\\left(y+1\right)\left(y^2+1\right)=z^3+1\\\left(z+1\right)\left(z^2+1\right)=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^3+x^2+x=y^3\left(1\right)\\y^3+y^2+y=z^3\\z^3+z^2+z=x^3\end{matrix}\right.\)

Giả sử \(x>y\Rightarrow x^3+x^2+x>y^3+y^2+y\)

\(\Rightarrow y^3>z^3\Leftrightarrow y>z\left(2\right)\)

\(\Rightarrow y^3+y^2+y>z^3+z^2+z\Rightarrow z>x\left(3\right)\)

Từ \(\left(2\right);\left(3\right)\Rightarrow y>x\) (Vô lí)

Giả sử \(x< y\Rightarrow x^3+x^2+x< y^3+y^2+y\)

\(\Rightarrow y^3< z^3\Leftrightarrow y< z\left(4\right)\)

\(\Rightarrow y^3+y^2+y< z^3+z^2+z\Rightarrow z< x\left(5\right)\)

Từ \(\left(4\right);\left(5\right)\Rightarrow y< x\) (Vô lí)

\(\Rightarrow x=y=z\)

\(\left(1\right)\Leftrightarrow x^3+x^2+x=x^3\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow x=y=z=0\) hoặc \(x=y=z=-1\)