K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2019

\(G=\frac{x^2-1}{x^2+1}=\frac{x^2+1-2}{x^2+1}\)

\(=1-\frac{2}{x^2+1}\)

Ta có: \(x^2\ge0\)

\(\Rightarrow x^2+1\ge1\)

\(\Rightarrow\frac{2}{x^2+1}\le2\)

\(\Rightarrow-\frac{2}{x^2+1}\ge-2\)

\(\Rightarrow1-\frac{2}{x^2+1}\ge-1\)

Vậy \(G_{min}=-1\Leftrightarrow x^2=0\Leftrightarrow x=0\)

23 tháng 12 2018

dạng bài này bn có thể dùng miền giá trị hàm để tách nhé(cái này chỉ làm nháp thôi)

(Chú ý  phương trình bậc 2 :ax2+bx+c=0.Phương trình có \(\Delta=b^2-4ac\)(\(\Delta\)là biệt số Đen-ta) 

Nếu \(\Delta\ge0\)thì pt có 2 nghiệm 

Nếu \(\Delta< 0\)thì pt vô nghiệm

         Bài làm

Gọi m là 1 giá trị của \(\frac{x^2-x+1}{x^2+x+1}\)

Ta có m= \(\frac{x^2-x+1}{x^2+x+1}\)

=>m(x2+x+1)=x2-x+1

=>mx2+mx+m-x2+x-1=0 =>(m-1)x2 +(m+1)x+m-1=0(1)

Nếu m=0..............(th này ko phải xét)

Nếu m\(\ne0\)thì pt (1) có nghiệm khi \(\Delta=b^2-4ac\ge0\)

\(\Leftrightarrow\left(m+1\right)^2-4.\left(m-1\right)\left(m-1\right)\ge0\)

\(\Leftrightarrow m^2+2m+1-4m^2+8m-4\ge0\)

\(\Leftrightarrow-3m^2+10m-3\ge0\)\(\Leftrightarrow3m^2-10m+3\le0\)

\(\Leftrightarrow\left(m-3\right)\left(3m-1\right)\le0\)

=> có 2 TH 

TH1: m-3\(\le0\)\(3m-1\ge0\)

=>\(\hept{\begin{cases}m\le3\\m\ge\frac{1}{3}\end{cases}\Leftrightarrow\frac{1}{3}\le m\le3}\)(t/m)(*)

TH2\(\hept{\begin{cases}m-3\ge0\\3m-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ge3\\m\le\frac{1}{3}\end{cases}}}\)(vô lí)(**)

Từ (*),(**) =>\(\frac{1}{3}\le m\le3\)

=>\(\hept{\begin{cases}Min_P=\frac{1}{3}\\Max_P=3\end{cases}}\)

Từ đây bạn tách ngược từ dưới lên.

Nếu ko biết thì nhắn tin cho mk ,mk tách cho

tk mk nha

11 tháng 2 2019

tôi đâu có rảnh

DD
5 tháng 2 2021

\(\frac{1}{x^2}+\frac{1}{9y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{9y^2}}=\frac{2}{3xy}=\frac{2}{3}\)

Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\frac{1}{x^2}=\frac{1}{9y^2}\\xy=1\end{cases}}\Rightarrow\hept{\begin{cases}x=\sqrt{3}\\y=\frac{1}{\sqrt{3}}\end{cases}}\).

21 tháng 11 2017

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

21 tháng 11 2017

tiếp đi bạn 

22 tháng 3 2022

Đặt \(2y=a\)thì ta được

\(P=\frac{1}{x^2+a^2}+\frac{1}{xa}=\left(\frac{1}{x^2+a^2}+\frac{1}{2xa}\right)+\frac{1}{2xa}\)

\(\ge\frac{4}{x^2+a^2+2ax}+\frac{2}{\left(x+a\right)^2}=\frac{6}{\left(x+a\right)^2}\ge\frac{6}{4}=\frac{3}{2}\)