K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2019

Bài 1:

a) \(\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{12}\)

\(=\frac{4}{\sqrt{5}-\sqrt{3}}-2\sqrt{3}\)

\(=\frac{4\sqrt{5}+4\sqrt{3}}{\sqrt{5^2}-\sqrt{3^2}}-2\sqrt{3}\)

\(=\frac{4\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-2\sqrt{3}\)

\(=\frac{4\left(\sqrt{5}+\sqrt{3}\right)}{2}-2\sqrt{3}\)

\(=2\left(\sqrt{5}+\sqrt{3}\right)-2\sqrt{3}\)

\(=2\sqrt{5}+2\sqrt{3}-2\sqrt{3}\)

\(=2\sqrt{5}\)

b) \(\sqrt{\frac{9}{8}}-\sqrt{\frac{49}{2}}+\sqrt{\frac{25}{18}}\)

\(=\frac{3}{2\sqrt{2}}-\frac{7}{\sqrt{2}}+\frac{5}{3\sqrt{2}}\)

\(=\frac{3\sqrt{2}}{2.2}-\frac{7}{\sqrt{2}}+\frac{5\sqrt{2}}{3.2}\)

\(=\frac{3\sqrt{2}}{4}-\frac{7}{\sqrt{2}}+\frac{5\sqrt{2}}{6}\)

\(=-\frac{23\sqrt{2}}{12}\)

14 tháng 11 2019

chung ta den bai 2 :3

a) \(\frac{x}{\sqrt{x}-2}=-1\)

\(\Leftrightarrow x=-\sqrt{x}+2\)

\(\Leftrightarrow x-2=-\sqrt{x}\)

bình phương 2 vế ta được:

\(\Leftrightarrow x^2-4x+4=x\)

\(\Leftrightarrow x^2-4x+4-x=0\)

\(\Leftrightarrow x^2-5x+4=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)

b) \(\sqrt{x-2}=x-4\)

chúng ta lại bình phương hai vế như câu a và chúng ta được:

\(\Leftrightarrow x-2=x^2-8x+16\)

\(\Leftrightarrow x-2-x^2+8x-16=0\)

\(\Leftrightarrow9x-18-x^2=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=3\end{cases}}\)

13 tháng 11 2019

Bài 1 :

a) \(\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{12}=\frac{4\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}-\sqrt{4.3}=\frac{4\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-2\sqrt{3}=2\left(\sqrt{5}+\sqrt{3}\right)-2\sqrt{3}=2\sqrt{5}\)

b) \(\sqrt{\frac{9}{8}}-\sqrt{\frac{49}{2}}+\sqrt{\frac{25}{18}}=\frac{\sqrt{9}}{\sqrt{4.2}}-\frac{\sqrt{49}}{\sqrt{2}}+\frac{\sqrt{25}}{\sqrt{9.2}}\)

\(=\frac{3}{2\sqrt{2}}-\frac{7}{\sqrt{2}}+\frac{5}{3\sqrt{2}}\)

\(=\frac{1}{\sqrt{2}}\left(\frac{3}{2}-7+\frac{5}{3}\right)\)

\(=\frac{1}{\sqrt{2}}.\left(-\frac{23}{6}\right)\)

\(=-\frac{23}{6\sqrt{2}}=-\frac{23\sqrt{2}}{12}\)

Bài 2 :

a) \(\frac{x}{\sqrt{x}-2}=-1\) (ĐKXĐ : \(x\ge0;x\ne4\))

\(\Leftrightarrow x=-\sqrt{x}+2\)

\(\Leftrightarrow x+\sqrt{x}-2=0\)

Đặt \(\sqrt{x}=t\left(t\ge0\right)\)

Ta có : t2 + t - 2 = 0

........ (Tìm t -> thay vào để tìm x -> đối chiếu với đkxđ -> kết luận)

b) \(\sqrt{x-2}=x-4\) (ĐKXĐ : \(x\ge4\))

\(\Leftrightarrow x-2=\left(x-4\right)^2\)

\(\Leftrightarrow x-2=x^2-8x+16\)

\(\Leftrightarrow x^2-8x+16-x+2=0\)

\(\Leftrightarrow x^2-9x+18=0\)

........ (Tìm x -> đối chiếu với đkxđ -> kết luận)

10 tháng 7 2017

thực hiện phép tính nha cám ơn m.ng

17 tháng 9 2019

\(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)

\(\Leftrightarrow\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-\sqrt{1}=4\)

\(\Leftrightarrow\sqrt{25}-\sqrt{1}=4\Leftrightarrow5-1=4\)(đúng)

Vậy \(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)(đpcm)

17 tháng 9 2019

\(M=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{11-6\sqrt{2}}}}\)

\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{2-6\sqrt{2}+9}}}\)

\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{\left(3-\sqrt{2}\right)^2}}}\)

\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+3-\sqrt{2}}}\)

\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{6}}\)

\(=\sqrt{16+32\sqrt{6}}\)

21 tháng 7 2019

a) \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)

\(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(1-\sqrt{5}\right)}+\frac{8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)

\(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)+8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)

\(\frac{10-2\sqrt{5}+2\sqrt{10}-2\sqrt{2}}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)

\(\frac{2\left(5-\sqrt{5}+\sqrt{10}-\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)

= -2

b); c); d) làm tương tự

9 tháng 10 2017

1) \(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)

\(=2\sqrt{5}-\sqrt{5^2.5}-\sqrt{4^2.5}+\sqrt{11^2.5}\)

\(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}\)

\(=4\sqrt{5}\)

2) \(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{15-\sqrt{6^2.6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-6\sqrt{6}+3^2}+\sqrt{\left(2\sqrt{6}\right)^2-12\sqrt{6}+3^2}\)

\(=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left|\sqrt{6}-3\right|+\left|2\sqrt{6}-3\right|\)

\(=3-\sqrt{6}+2\sqrt{6}-3\)  ( vi \(\sqrt{6}-3< 0\))

\(=\sqrt{6}\)

5) \(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)

\(=2\frac{4}{\sqrt{3}}-3.\frac{1}{3}-6\sqrt{\frac{2^2}{3.5^2}}\)

\(=\frac{8\sqrt{3}}{3}-1-6.\frac{2}{5}.\sqrt{\frac{1}{3}}\)

\(=8\frac{\sqrt{3}}{3}-1-\frac{12}{5}.\frac{\sqrt{3}}{3}\)

\(=\frac{28}{5}.\frac{\sqrt{3}}{3}-1\)

7 tháng 8 2018

 Báo cáo sai phạm

1) 2√5−√125−√80+√605

=2√5−√52.5−√42.5+√112.5

=2√5−5√5−4√5+11√5

=4√5

2) √15−√216+√33−12√6

=√15−√62.6+√33−12√6

=√15−6√6+√33−12√6

=√(√6)2−6√6+32+√(2√6)2−12√6+32

=√(√6−3)2+√(2√6−3)2

=|√6−3|+|2√6−3|

=3−√6+2√6−3  ( vi √6−3<0)

=√6

5) 2√163 −3√127 −6√475 

=24√3 −3.13 −6√223.52 

=8√33 −1−6.25 .√13 

=8√33 −1−125 .√33 

=285 .√33 −1

23 tháng 8 2021

a, ĐK :a >= 3

\(25\sqrt{\frac{a-3}{25}}-7\sqrt{\frac{4a-12}{9}}-7\sqrt{a^2-9}+18\sqrt{\frac{9a^2-81}{81}}=0\)

\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{\left(a-3\right)\left(a+3\right)}+6\sqrt{\left(a-3\right)\left(a+3\right)}=0\)

\(\Leftrightarrow\sqrt{a-3}\left(5-\frac{14}{3}-\sqrt{a+3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{a-3}=0\\\sqrt{a+3}=\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{2}{9}\left(loai\right)\end{cases}}\)

b, \(ĐK:x\ge-\frac{1}{2}\)

\(\Leftrightarrow3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow\frac{4}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow\sqrt{2x+1}=3\)

\(\Leftrightarrow x=4\left(tm\right)\)

23 tháng 8 2021

a) đk: \(a\ge3\)

pt \(\Leftrightarrow25\frac{\sqrt{a-3}}{\sqrt{25}}-7\frac{\sqrt{4\left(a-3\right)}}{\sqrt{9}}-7\sqrt{a^2-9}+18\frac{\sqrt{9\left(a^2-9\right)}}{\sqrt{81}}=0\)

\(\Leftrightarrow5\sqrt{a-3}-\frac{7.2}{3}\sqrt{a-3}-7\sqrt{a^2-9}+\frac{18.3}{9}\sqrt{a^2-9}=0\)

\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{a^2-9}+6\sqrt{a^2-9}=0\)

\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}-\sqrt{a^2-9}=0\)

\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}=\sqrt{a^2-9}\)

\(\Leftrightarrow\frac{1}{9}\left(a-3\right)=a^2-9\)

\(\Leftrightarrow a^2-\frac{1}{9}a-\frac{26}{3}=0\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{26}{9}\left(loại\right)\end{cases}}\)

9 tháng 10 2019

a.

\(DK:49-28x-4x^2\ge0\)

PT\(\Leftrightarrow\sqrt{49-28x-4x^2}=5\)

\(\Leftrightarrow49-28x-4x^2=25\)

\(\Leftrightarrow4x^2+28x-24=0\)

\(\Leftrightarrow x^2+7x-6=0\)

Ta co:

\(\Delta=7^2-4.1.\left(-6\right)=73>0\)

\(\Rightarrow\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\left(n\right)\\x_2=\frac{-7-\sqrt{73}}{2}\left(n\right)\end{cases}}\)

Vay nghiem cua PT la \(\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\\x_2=\frac{-7-\sqrt{73}}{2}\end{cases}}\)