K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 11 2019

Đặt \(\left(\sqrt{5a+4};\sqrt{5b+4};\sqrt[]{5c+4}\right)=\left(x;y;z\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2\le x;y;z\le3\\x^2+y^2+z^2=5\left(a+b+c\right)+12=17\end{matrix}\right.\)

Ta cần tìm GTNN của \(A=x+y+z\)

Do \(2\le x\le3\Rightarrow\left(x-2\right)\left(x-3\right)\le0\)

\(\Leftrightarrow x^2-5x+6\le0\Leftrightarrow x\ge\frac{x^2+6}{5}\)

Hoàn toàn tương tự ta có: \(y\ge\frac{y^2+6}{5}\) ; \(z\ge\frac{z^2+6}{5}\)

Cộng vế với vế: \(x+y+z\ge\frac{x^2+y^2+z^2+18}{5}=7\)

\(\Rightarrow A_{min}=7\) khi \(\left(x;y;z\right)=\left(2;2;3\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

Đặt $\sqrt{4-a^2}=x; \sqrt{4-b^2}=y; \sqrt{4-c^2}=z$ thì bài toán trở thành:

Cho $x,y,z\in [0;2]$ thỏa mãn $x^2+y^2+z^2=6$. Tìm min: $P=x+y+z$

-------------------

Ta có: $P^2=x^2+y^2+z^2+2(xy+yz+xz)=6+2(xy+yz+xz)$

Vì $x,y,z\in [0;2]$ nên:

$(x-2)(y-2)(z-2)\leq 0\Leftrightarrow 2(xy+yz+xz)\geq xyz+4(x+y+z)-8\geq 4(x+y+z)-8=4P-8$

Vậy $P^2=6+2(xy+yz+xz)\geq 6+4P-8$

$\Leftrightarrow P^2-4P+2\geq 0$

$\Leftrightarrow (P-2)^2\geq 2\Rightarrow P\geq 2+\sqrt{2}$.

Vậy $P_{\min}=2+\sqrt{2}$.

Dấu "=" xảy ra khi $(a,b,c)=(0,2,\sqrt{2})$ và hoán vị

22 tháng 1 2021

Do \(a,b,c\geq 0\) và \(a+b+c=1\) nên \(a,b,c\le1\).

Xét hiệu \(5a+4-\left(a+2\right)^2=a\left(1-a\right)\ge0\)

\(\Rightarrow5a+4\ge\left(a+2\right)^2\)

\(\Rightarrow\sqrt{5a+4}\ge a+2\).

Tương tự, \(\sqrt{5b+4}\ge b+2;\sqrt{5c+4}\ge c+2\).

Cộng vế với vế ta có \(T\ge a+b+c+6=7\).

Đẳng thức xảy ra khi a = 1; b = c = 0 và các hoán vị.

Vậy Min T = 7 khi a = 1; b = c = 0. 

22 tháng 1 2021

Một ý tưởng để có được bất đẳng thức phụ \(\sqrt{5a+4}\ge a+2\forall0\le a\le1.\)

Do $0\leq a \leq 1$ nên $a\ge a^2.$

Ta có: \(\sqrt{5a+4}=\sqrt{a+4a+4+\ 4}\ge\sqrt{a^2+4a+4+4}=a+2\)

Ngoài ra còn một cách là giả sử \(\sqrt{5a+4}\ge ma+n\)

rồi đi chọn $m,n$ theo điểm rơi.

Không biết còn cách nào khác không nhỉ?

8 tháng 1 2020

Đặt \(\left(\sqrt{5a+4};\sqrt{5b+4};\sqrt{5c+4}\right)=\left(x;y;z\right)\) \(\left(2\le x;y;z\le3\right)\)

\(\Rightarrow x^2+y^2+z^2=5\left(a+b+c\right)+12=5+12=17\)

Ta lại có: \(2\le x\le3\Rightarrow\left(x-2\right)\left(x-3\right)\le0\)\(\Rightarrow x^2-5x+6\le0\)

T/tự: \(y^2-5y+6\le0;z^2-5z+6\le0\)

Nên: \(\left(x^2-5x+6\right)+\left(y^2-5y+6\right)+\left(z^2-5z+6\right)\le0\)

\(\Rightarrow5\left(x+y+z\right)\ge x^2+y^2+z^2+18=17+18=35\)

\(\Rightarrow x+y+z\ge7\)

Đẳng thức xảy ra khi: \(\left(x;y;z\right)=\left(2;2;3\right)\) và các hoán vị

Vậy MinT=7 đạt được khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

4 tháng 9 2021

Áp dụng BĐT Bunhiacopxki ta có: 

\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)

\(=3\left(2a+2b+2c\right)=3.2\left(a+b+c\right)=6.2021=12126\)

\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{12126}\)

Dấu ''='' xảy ra khi \(a=b=c=\dfrac{2021}{3}\)

NV
1 tháng 8 2021

\(Q\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\le\sqrt{6.\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt{6\sqrt{3}}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

Lại có:

\(a^2+b^2+c^2\le1\Rightarrow0\le a;b;c\le1\)

\(\Leftrightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)\le0\)

\(\Leftrightarrow a+b+c\ge a^2+b^2+c^2=1\)

Do đó:

\(Q^2=2\left(a+b+c\right)+2\sqrt{a^2+ab+bc+ca}+2\sqrt{b^2+ab+bc+ca}+2\sqrt{c^2+ab+bc+ca}\)

\(Q^2\ge2\left(a+b+c\right)+2\sqrt{a^2}+2\sqrt{b^2}+2\sqrt{c^2}\)

\(Q^2\ge4\left(a+b+c\right)\ge4\)

\(\Rightarrow Q\ge2\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị

1 tháng 8 2021

hàng đầu tiên tìm MaxQ áp dụng bđt nào thế thầy?

9 tháng 5 2022

\(P=\sqrt{a+b}+\sqrt{b+c}\sqrt{c+a}\)

Aps dụng Bunhia-cốpxki : \(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)

\(=6\left(a+b+c\right)\)

\(=6.2021=12126\Leftrightarrow P=\sqrt{12126}\)

Vậy \(Max\left(P\right)=\sqrt{12126}\Leftrightarrow a=b=c=\dfrac{2021}{3}\)

(Refer ;-;)

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]