Tìm x
a) |x-2| + |x| + 3x = 81
b)\(^{32^{-x}\cdot16^x=1024}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có công thức như sau :
\(a^{-x}=?\)
lời giải công thức này như sau :
\(a^{-x}=\left(\frac{1}{a}\right)^x\)
vậy bài cũng gải tương tự
\(32^{-x}.16^x=\left(\frac{1}{32}\right)^x.\left(16^x\right)\)
\(=\left(\frac{16}{32}\right)^x=\left(\frac{1}{2}\right)^x=2^{-x}\)
mà \(2048=2^{11}\)
\(\Rightarrow-x=11\)
\(\Leftrightarrow x=-11\)
vậy \(x=-11\)
\(\Rightarrow\)\(\left(\frac{1}{32}\right)^x\cdot16^x=2048\)
\(\Rightarrow\)\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^{-11}\)
\(\Rightarrow\)\(x=-11\)
\(\frac{2^{4-x}}{16^5}=32^6\)
\(\Rightarrow\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
\(\Rightarrow\frac{2^{4-x}}{2^{20}}=2^{30}\)
\(\Rightarrow2^{4-x}=2^{30}.2^{20}\)
\(\Rightarrow2^{4-x}=2^{50}\)
\(\Rightarrow4-x=50\)
\(\Rightarrow x=-46\)
64 . 4x = 168
<=> 43. 4x = 416
=> 3 + x = 16
<=> x = 13
Vậy x = 13
2x.162 = 1024
<=> 2x. 28 = 210
=> x + 8 = 10
<=> x = 2
Vậy x = 2
b: Ta có: \(2^x\cdot16^2=1024\)
\(\Leftrightarrow2^x\cdot2^8=2^{10}\)
\(\Leftrightarrow x+8=10\)
hay x=2
a: =>31-x=60
=>x=-29
b: =>(x-140):35=280-270=10
=>x-140=350
=>x=490
c: =>(1900-2x):35=48
=>1900-2x=1680
=>2x=220
=>x=110
d: =>\(2^{2x-1}=2^9\cdot2=2^{11}\)
=>2x-1=11
=>x=6
e: =>(x+2)^5=4^5
=>x+2=4
=>x=2
f: =>3x-4=0 hoặc x-1=0
=>x=4/3 hoặc x=1
g: =>(2x-1)^2=49
=>2x-1=7 hoặc 2x-1=-7
=>x=-3 hoặc x=4
h: =>x(x+1)/2=78
=>x(x+1)=156
=>x=12
\(2^{3x+4}=1024\)
Đổi 1024=\(2^{10}\)
\(=>2^{3x+4}\)=\(2^{10}\)
3x+4=\(2^{10}\)
3x=10-4
3x=6
x=6:3
x=2
tk m nhé
\(2^{3x+4}=1024\)
Đổi: \(1024=2^{10}\)
\(\Rightarrow3x+4=10\)
\(3x=10-4\)
\(3x=6\)
\(x=6:3\)
\(x=2\)