K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2019

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2019}\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{2019}\)

\(\Leftrightarrow2019\left(ab+bc+ac\right)=abc\)

\(\Leftrightarrow2019\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc\right)+ac\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow b\left(a+b+c\right)\left(a+c\right)+ca\left(a+c\right)=0\)

\(\Leftrightarrow\left(ab+b^2+bc+ac\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

Suy ra a + b = 0 hoặc b + c = 0 hoặc a + c = 0

Mà a + b + c = 2019 nên phải có 1 trong ba số a,b,c bằng 2019 (đpcm)

7 tháng 8 2020

Vào trang cá nhân của mình đi, có cái này hay lắm, nhớ kb vs mình nha

26 tháng 8 2018

Câu hỏi của hanhungquan - Toán lớp 8 - Học toán với OnlineMath tương tự

30 tháng 8 2018

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2019}\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{2019}\Leftrightarrow2019\left(ab+bc+ca\right)=abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)

\(\Leftrightarrow\left(ab+bc\right)\left(a+b+c\right)+ca\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow b\left(a+c\right)\left(a+b+c\right)+ca\left(a+c\right)+abc-abc=0\)

\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ca\right)=0\)

\(\Leftrightarrow\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)

Mà \(a+b+c=2019\)

\(\Rightarrow a=2019\)hoặc \(b=2019\)hoặc \(c=2019\)

NV
9 tháng 3 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2019}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{ab+ac+bc+c^2}{abc\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b=0\Rightarrow c=2019\\b+c=0\Rightarrow a=2019\\a+c=0\Rightarrow b=2019\end{matrix}\right.\)

9 tháng 8 2019

EM tham khảo phần đầu ở link: Câu hỏi của Đinh Nguyến Nhật Minh - Toán lớp 8 - Học toán với OnlineMath

Trong 3 số a,b, c có hai số đối nhau g/s 2 số đó là a và b kho đó a=-b 

=> \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-b\right)^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{c^{2019}}\)

và \(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-b\right)^{2019}+b^{2019}+c^{2019}}=\frac{1}{-b^{2019}+b^{2019}+c^{2019}}=\frac{1}{c^{2019}}\)

Do đó: \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)

9 tháng 7 2019

\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)=> \(a+b+c=\frac{ab+bc+ac}{abc}=ab+bc+ac\)

Ta có \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(abc-1\right)+a+b+c-ab-bc-ac=0\)

=> có ít nhất 1 trong 3 số a,b,c bằng 1

Vậy có ít nhất 1 trong 3 số a,b,c bằng 1

9 tháng 4 2020

\(a+b+c = 1 ; 1/a + 1/b + 1/c = 1 \)

\(=> (a+b+c)(1/a +1/b+1/c) = 1\)

\(<=> a/b + b/a + a/c + c/a + b/c + c/b + 3 - 1 = 0\)

\(<=> (a^2+b^2)/ab + (a^2+c^2)/ac + (b^2+c^2)/bc + 2 =0\)

\(<=> (a^2 + b^2).c + (a^2+c^2).b + (b^2+c^2).a + 2abc = 0\)

\(<=> a^2c + b^2c + a^2b + c^2b + ab^2 + ac^2 + 2abc =0 \)

\(<=> a^2c + ac^2 + abc + a^2b+ ab^2 + abc + b^2c + bc^2 =0\)

\(<=> ac(a+b+c) + ab(a+b+c) + bc(b+c) =0 \)

\(<=> a(b+c)(a+b+c) + bc(b+c) =0 \)

\(<=> (b+c)(a^2 + ab + ac + bc ) = 0 \)

\(<=> (b+c)[a(a+b) + c(a+b)] =0\)

\(<=> (b+c)(a+b)(a+c) =0 \)

<=> 1 trong 3 số \(b+c;a+b ; a+c = 0\)

\(a+b=0 => a= -b => a + b + c = 1 <=> c = 1 ; a = b = 0\)

Thay vào S ta được : \(\Rightarrow S=0^{2019}+0^{2019}+1^{2019}=1\)

7 tháng 10 2015

Thay 1 = abc ta có: \(a+b+c=\frac{abc}{a}+\frac{abc}{b}+\frac{abc}{c}\)

<=> a + b + c = bc + ac + ab

<=> (a - ac) + (b - bc) + (c - ab) = 0 

<=> a(1 - c) + b(1 - c) + (c - \(\frac{1}{c}\)) = 0 

<=> ca(1 - c) + cb(1 - c) + (c - 1)(c + 1) = 0 

<=> (1 - c)(ca + cb - c - 1) = 0 

<=> (1 - c)[c(a -1) + (cb - abc)]= 0 

<=> (1 - c)[c(a - 1) + cb(1 - a)]= 0 

<=> (1 - c)(a - 1)(c - cb) = 0

<=> (1 - c)(a - 1)(1 - b).c = 0 <=> a = 1 hoặc b = 1 hoặc c = 1

Vậy.... 

7 tháng 10 2015

http://olm.vn/hoi-dap/question/179947.html

13 tháng 1 2019

biến đổi tương đương đưa về (a-1)(b-1)(c-1)=0

13 tháng 1 2019

Ta có : \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow a+b+c=\frac{ab+bc+ac}{abc}\)

\(\Leftrightarrow a+b+c=ab+bc+ac\left(abc=1\right)\)

\(\Leftrightarrow1+a+b+c-ab-bc-ac-1=0\)

\(\Leftrightarrow abc+a+b+c-ab-bc-ac-1=0\)

\(\Leftrightarrow ab\left(c-1\right)-a\left(c-1\right)-b\left(c-1\right)+c-1=0\)

\(\Leftrightarrow\left(ab-a-b+1\right)\left(c-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)

\(\Leftrightarrow\)a = 1 hoặc b = 1 hoặc c = 1

=> Đpcm 

2 tháng 1 2016

sao tớ nhẩm ra là 10 nhỉ!!??

2 tháng 1 2016

Ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)

=> \(\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)

=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

+) Nếu a + b + c = 0 => a + b = -c; b + c = -a; c + a = -b

=> \(\frac{a+b}{c}=-1\);\(\frac{b+c}{a}=-1\)\(\frac{c+a}{b}=-1\)

=> M = (-1)3 = -1

+) Nếu a + b + c khác 0 => a = b = c => a + b = 2c; b + c = 2a; c + a = 2b

=> M \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=2.2.2=8\)

Vậy M = -1 hoặc M = 8