K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2019

A B C D 1 2 1 2

Ta có

\(\widehat{A}+\widehat{B}+\widehat{C}=180^O\)

\(\Rightarrow\widehat{C}=180^O-\widehat{A}-\widehat{B}\)

\(\Rightarrow\widehat{C}=180-75-65=40\)

Vì AD là tia phân giác của góc A

\(\Rightarrow\hept{\begin{cases}A_1=37,5\\A_2=37,5\end{cases}}\)

Ta có

\(A_1+C+D_1=180\)

\(\Rightarrow D_1=180-C-A_1\)

\(\Rightarrow D_1=180-40-37,5=102,5^O\)

Tương tự \(\Delta ABD\)ta có

\(D_1=77,5^o\)

Vậy......

NV
23 tháng 8 2021

\(\dfrac{B}{C}=\dfrac{4}{3}\Rightarrow B=\dfrac{4C}{3}\)

\(B+C=180^0-A=105^0\Rightarrow C+\dfrac{4C}{3}=105^0\Rightarrow C=45^0\) \(\Rightarrow B=60^0\)

Kẻ đường cao AD ứng với BC (do 2 góc B và C đều nhọn nên D nằm giữa B và C)

Trong tam giác vuông ABD:

\(sinB=\dfrac{AD}{AB}\Rightarrow AD=AB.sinB=10,6.sin60^0\approx9,2\left(cm\right)\)

\(cosB=\dfrac{BD}{AB}\Rightarrow BD=AB.cosB=10,6.cos60^0=5,3\left(cm\right)\)

Trong tam giác vuông ACD:

\(tanC=\dfrac{AD}{CD}\Rightarrow CD=AD.tanC=9,2.tan45^0=9,2\left(cm\right)\)

\(sinC=\dfrac{AD}{AC}\Rightarrow AC=\dfrac{AD}{sinC}=\dfrac{9,2}{sin45^0}\approx13\left(cm\right)\)

\(BC=BD+CD=5,3+9,2=14,5\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AD.BC=\dfrac{1}{2}.9,2.14,5=66,7\left(cm^2\right)\)

NV
23 tháng 8 2021

undefined

10 tháng 7 2017

trời ạ 

ta có tam giác ABC= tam giác DEF 

suy ra góc A = góc D , góc b = góc E , góc C = góc F 

trong tam giác ABC CÓ  góc A + góc B +góc C = 180 độ

mà góc A=55 độ , B = 75 độ 

suy ra góc C =50 độ

mà góc C = góc F = 50 độ 

góc D = góc A =55 độ

góc B = góc E = 75 độ

cho mình nha 

thanhks

10 tháng 7 2017

giải

Ta có : \(\Delta ABC=\Delta DEF\)

\(\Rightarrow\widehat{A}=\widehat{D}=55^0\)

\(\widehat{B}=\widehat{E}=75^0\)

Ta có tổng 3 góc trong một tam giác bằng 1800

\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=\widehat{D}+\widehat{E}+\widehat{F}=180^0\)

\(\Rightarrow\widehat{C}=180^0-\left(\widehat{A}+\widehat{B}\right)=180^0-\left(55^0+75^0\right)\)

\(\Rightarrow\widehat{C}=\widehat{F}=50^0\)