K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 11 2019

\(\Leftrightarrow2y^3\left(3x^2-5\right)+3x^2-5=-7\)

\(\Leftrightarrow\left(2y^3+1\right)\left(3x^2-5\right)=-7\)

Đến đây là pt ước số cơ bản rồi

29 tháng 8 2021

ai giúp em bài1 và phần b bài 2 với ạ

 

2 tháng 2 2017

Đáp án D

=>3x^2-c=ax^2-2ax+a-bx+b

=>3x^2-c-a*x^2+2ax-a+bx-b=0

=>x^2(3-a)+x(2a+b)-a-b-c=0

Để phương trình luôn có nghiệm thì 3-a=0 và 2a+b=0 và a+b+c=0

=>a=3; b=-6; c=-a-b=-3+6=3

31 tháng 1 2023

tại sao 3-a=0; 2a+b=0 và a+b+c=0 vậy bạn ?

 

8 tháng 9 2018

Chọn A.

14 tháng 3 2018

\(3x^2+4x+1=3x^2+3x+x+1=\left(x+1\right)\left(3x+1\right)\)

2 tháng 2 2017

a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)

\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)

Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2

nên Áp dụng hệ thức Viet, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)

Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì 

\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)

Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau

17 tháng 9 2018

Đáp án đúng : C