Cho a=1/2sqrt(sqrt(2) 1/8)-sqrt(2)/8.tính F = a^2 sqrt(a^4 a 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
Tính giá trị biểu thức A = \(x^2+\sqrt{x^{^4}+x+1}\) với x =\(\dfrac{1}{2}\sqrt{\sqrt{2}+\dfrac{1}{8}}-\dfrac{\sqrt{2}}{... - Hoc24
\(a=\dfrac{1}{2}\sqrt{\sqrt{2}+\dfrac{1}{8}}-\dfrac{1}{8}\sqrt{2}\\ \Leftrightarrow a+\dfrac{\sqrt{2}}{8}=\dfrac{1}{2}\sqrt{\sqrt{2}+\dfrac{1}{8}}\\ \Leftrightarrow\left(a+\dfrac{\sqrt{2}}{8}\right)^2=\dfrac{1}{4}\left(\sqrt{2}+\dfrac{1}{8}\right)\\ \Leftrightarrow a^2+\dfrac{a\sqrt{2}}{4}+\dfrac{1}{32}=\dfrac{\sqrt{2}}{4}+\dfrac{1}{32}\\ \Leftrightarrow a^2=\dfrac{\sqrt{2}-a\sqrt{2}}{4}=\dfrac{\sqrt{2}\left(1-a\right)}{4}\\ \Leftrightarrow a^4=\dfrac{a^2-2a+1}{8}\\ \Leftrightarrow a^4+a^2+1=\dfrac{a^2-2a+1}{8}+a^2+1=\dfrac{9a^2-2a+9}{8}\)
\(\Leftrightarrow a^2+\sqrt{a^4+a^2+1}=a^2+\dfrac{\sqrt{9a^2-2a+9}}{2\sqrt{2}}=\dfrac{2a^2\sqrt{2}+\sqrt{9a^2-2a+9}}{2\sqrt{2}}\)
Trịnh Đình Thuận
Bn viết đề bài j đấy
Đây mà là toán lớp 1 í hả ???