Cho đoạn thẳng MN. Trên 2 nửa mặt phẳng đối nhau bờ MN kẻ MP, NQ vuông góc với MN sao cho MP = NQ. CMR: ∠MPQ = ∠NQP
P/s: Bài này tương đối ngắn và dễ, nhưng gần làm được thì mình bị kẹt nên có thể thì mong mọi người giúp :(( Cảm ơn trước
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác MAO và tam giác NBO có :
MO = ON do O là trung điểm của MN (gt)
góc OMa = góc ONB (gt)
MA = BN (gt)
=> tam giác MAO = tam giác NBO (c-g-c)
=> AO = OB (Đn)
mà O nằm giữa A và B
=> O là trung điểm của AB (đn)
b, góc OMa = góc ONb (gt)
=> Ma // Nb (đl)
=> góc CAB = góc ABD (đl)
xét tam giác CAB = tam giác DBA có : AC = BD (gt)
AB chung
=> tam giác CAB = tam giác DBA (c-g-c)
=> BC = AD (đn)
a )Xét ΔAOC và ΔBOD ,có:
BD = AC (gt)
BO = OA ( O là trung điểm của AB)
Góc xAB = ABy ( gt )
\(\Rightarrow\) ΔAOC = ΔBOD( c-g-c)
=> OC = OD ( 2 cạnh tương ứng )
Xét ΔAOE và ΔBOF,có:
Góc EAO = góc OBF(gt)
OA = OB (gt)
AE = BF ( gt)
=> ΔAOE = ΔBOF(c - g -c)
=> OE = OF ( 2 cạnh tương ứng )
b) Ta có :
Ax và By thuộc 2 nửa mặt phẳng đối nhau
mà : - E và C nằm trên tia Ax , D và F nằm trên tia By (1)
- EF và DC cắt nhau tại O (2)
Từ (1) và (2) => C , O , D thẳng hàng
c)Xét ΔEOD và ΔCOF,có:
Góc DOE = góc COF( 2 góc đối đỉnh)
OE = OF ( Theo câu a)
OC = OD ( Theo câu a)
=> ΔDOE = ΔCOF(c-g-c)
=> ED = CF ( 2 cạnh tương ứng )
Tự vẽ hình.
Ta có :
MP vuông góc với MN
NQ vuông góc với MN
=>MP//NQ
=>^MPQ=^NQP(2 góc so le trong)
=>đpcm