Cho a,b thuộc n và 5a+3b chia hết cho 1995, 13a+8b chia hết cho 1995. Chứng minh a,b chia hết cho 1995.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 5a+3b \(⋮\)1995=>8(5a+3b) ⋮ 1995=> 40a+24b ⋮ 1995 (1)
Vì 13a+8b⋮ 1995=>3(13a+8b)⋮ 1995=>39a+24b⋮ 1995 (2)
từ (1),(2) => 40+24b -39a -24b ⋮ 1995 => a ⋮ 1995
bạn làm tương tự với b nhé
CMR nếu cả ( 5a + 3b ) chia hết cho 1995 và ( 13a + 8b ) chia hết cho 1995 thì a,b chia hết cho 1995
vì 5a + 3b và 13a+8b chia hết cho 1995 => 13(5a+3b) và 5(13a+8b) chia hết cho 1995=> 5(13a+8b)-13(5a+3b) chia hết cho 1995 => b chia hết cho 1995
vì 5a+3b và 13a+8b chia hết cho 1995 => 8(5a+3b)-3(13a+8b) chia hết cho 1995=> a chia hết cho 1995
Vậy a và b chia hết cho 1995
+) 5a + 3b chia hết cho 2012 => 8(5a + 3b) chia hết cho 2012 => 40a + 24b chia hết cho 2012
13a + 8b chia hết cho 2012 => 3(13a + 8b) chia hết cho 2012 => 39a + 24b chia hết cho 2012
=> 40a + 24b - (39a + 24b) chia hết cho 2012 => a chia hết cho 2012
+) 5a + 3b chia hết cho 2012 => 13(5a + 3b) chia hết cho 2012 => 65a + 39b chia hết cho 2012
13a + 8b chia hết cho 2012 => 5(13a + 8b) chia hết cho 2012 => 65a + 40b chia hết cho 2012
=> 65a + 40b - (65a + 39b) chia hết cho 2012 => b chia hết cho 2012
Vậy ...
Vì \(\hept{\begin{cases}5a+3b⋮1995\\13a+8b⋮1995\end{cases}\Rightarrow\hept{\begin{cases}8.\left(5a+3b\right)⋮1995\\3.\left(13a+8b\right)⋮1995\end{cases}\Rightarrow}\hept{\begin{cases}40a+24b⋮1995\\39a+24b⋮1995\end{cases}}}\)
=> (40a+24b)−(39a+24b)⋮1995
=> 40a+24b−39a−24b⋮1995
=> b⋮1995(1)
=> 8b⋮1995
Mặt khác 13a+8b⋮1995
=> 13a⋮1995Mà (13;1995)=1
=> a⋮1995(2)Từ (1) và (2)
=> a,b⋮1995(đpcm)
bạn giải sai chắc chắn 100% mk đc cô giảng bài này rồi