Tìm các số tự nhiên n sao cho B = n2 +2n + 18 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
\(n^2+2n+\sqrt{n^2+2n+18}+9\)là số chính phương thì \(\sqrt{n^2+2n+18}\)là số tự nhiên.
Khi đó \(n^2+2n+18=m^2\)
\(\Leftrightarrow\left(m-n-1\right)\left(m+n+1\right)=1.17\)
Do \(m,n\)là số tự nhiên nên
\(\hept{\begin{cases}m-n-1=1\\m+n+1=17\end{cases}}\Leftrightarrow\hept{\begin{cases}m=9\\n=7\end{cases}}\)
Với \(n=7\)thì \(n^2+2n+\sqrt{n^2+2n+18}+9=7^2+2.7+\sqrt{7^2+2.7+18}+9\)
\(=81=9^2\)là số chính phương (thỏa mãn).
Vậy \(n=7\).
Vì \(n\)là số tự nhiên có 2 chữ số
\(\Rightarrow\)\(10\le n\le99\)\(\Rightarrow\)\(21\le2n+1\le199\)
Vì \(2n+1\)là số chính phương lẻ
\(\Rightarrow\)\(2n+1\in\left\{25;49;81;121;169\right\}\)
\(\Rightarrow\)\(2n\in\left\{24;48;80;120;168\right\}\)
\(\Rightarrow\)\(n\in\left\{12;24;40;60;84\right\}\)
Thay lần lượt các giá trị của \(n\)vào \(3n+1,\)ta có:
+ Với \(n=12\)\(\Rightarrow\)\(3n+1=3\times12+1=37\left(L\right)\)
+ Với \(n=24\)\(\Rightarrow\)\(3n+1=3\times24+1=73\left(L\right)\)
+ Với \(n=40\)\(\Rightarrow\)\(3n+1=3\times40+1=121\left(TM\right)\)
+ Với \(n=60\)\(\Rightarrow\)\(3n+1=3\times60+1=181\left(L\right)\)
+ Với \(n=84\)\(\Rightarrow\)\(3n+1=3\times84+1=253\left(L\right)\)
Vậy \(n=40\)
Chúc bn hok tốt ^_^
Vì n2 + 2n + 12 là số chính phương nên đặt n2 + 2n + 12 = k2 (k thuộc N)
Suy ra (n2 + 2n + 1) + 11 = k2
Suy ra k2 – (n+1)2 = 11
Suy ra (k+n+1)(k-n-1) = 11
Nhận xét thấy k+n+1 > k-n-1 và chúng là những số nguyên dương, nên ta có thể viết : (k+n+1)(k-n-1) = 11.1
+ Với k+n+1 = 11 thì k = 6
Thay vào ta có : k – n - 1 = 1
6 - n - 1 =1 Suy ra n = 4
Đặt \(n^2+2n+18=a^2\left(a\inℕ;n\inℕ\right)\)
\(\Leftrightarrow a^2-\left(n+1\right)^2=17\)
\(\Leftrightarrow\left(a+n+1\right)\left(a-n-1\right)=17\)
Vì \(a\inℕ;n\inℕ\) nên \(\left(a+n+1\right)>\left(a-n-1\right)\); 17 là số nguyên tố
\(\Rightarrow a+n+1=17\)(*)
và a - n - 1 = 1 hay a = n + 2
Thay a = n +2 vào (*) tính được n = 7