Cho các số thực dương x,y,z thỏa mãn x+y+z=3. Tìm min
\(A=\frac{x^{20}}{y^{11}}+\frac{y^{20}}{z^{11}}+\frac{z^{20}}{x^{11}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1089}{400}x+\frac{1}{x}+\frac{1089}{400}y+\frac{1}{y}+\frac{1089z}{400}+\frac{1}{z}-\left(\frac{689}{400}x+\frac{689}{400}y+\frac{689}{400z}\right)\)
\(\ge2\sqrt{\frac{1089}{400}}+2\sqrt{\frac{1089}{400}}+2\sqrt{\frac{1089}{400}}-\frac{689}{400}\cdot\frac{20}{11}\)
= 1489/220
Dấu '' = '' xảy ra khi x = y= z = 20/33
Ta có phương trình \(\frac{x}{7}+\frac{y}{11}+\frac{z}{13}=\frac{946053}{99999}\)
\(\Leftrightarrow\frac{143x+91y+77z}{1001}=\frac{947}{1001}\)
\(\Leftrightarrow143x+91y+77z=947\)(1)
\(\Leftrightarrow7\left(13y+11z\right)=947-143x\)
Dễ thấy \(VT⋮7\Rightarrow947-143x⋮7\)
Mà y,z nguyên dương nên VT > 0 do đó \(947-143x>0\Leftrightarrow x\le6\)
+) x = 1 thì \(947-143.1=804\)không chia hết cho 7
+) x = 2 thì \(947-143.2=661\)không chia hết cho 7
+) x = 3 thì \(947-143.3=518\) chia hết cho 7 (tm)
+) x = 4 thì \(947-143.4=375\)không chia hết cho 7
+) x = 5 thì \(947-143.5=232\)không chia hết cho 7
+) x = 6 thì \(947-143.5=89\)không chia hết cho 7
Sau khi xét ta tìm được x = 3
Thay x = 3 vào phương trình (1), ta được \(13y+11z=74\)
\(\Leftrightarrow11z=74-13y\)
Vì z nguyên dương nên VT > 0 nên 74 - 13y > 0 và \(74-13y⋮11\)
\(\Rightarrow y< 6\)
+) y = 1 thì 74 - 13y = 61 không chia hết cho 11
+) y = 2 thì 74 - 13y = 48 không chia hết cho 11
+) y = 3 thì 74 - 13y = 35 không chia hết cho 11
+) y = 4 thì 74 - 13y = 22 chia hết cho 11 (tm)
+) y = 5 thì 74 - 13y = 9 không chia hết cho 11
Tóm lại, y = 4
Khi đó 11z = 22 nên z = 2
Vậy tìm được bộ ba số (x;y;z) thỏa mãn là (3;4;2)
\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)
Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)
tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)
=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)
Dấu "=" xảy ra khi x=y=z=4
Vậy minM=6 khi x=y=z=4
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
\(M=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
\(=\left(\frac{3}{x}+\frac{3x}{4}\right)+\left(\frac{9}{2y}+\frac{y}{2}\right)+\left(\frac{4}{z}+\frac{z}{4}\right)+\left(\frac{x}{4}+\frac{y}{2}+\frac{3z}{4}\right)\)
\(\ge13\)
Dấu "=" xảy ra tại x=2;y=3;z=4
Từ giả thiết ta có :
\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
ta có : \(Q=\frac{y+2}{x^2}+\frac{z+2}{y^2}+\frac{x+2}{z^2}\)
\(=\frac{\left(x+1\right)+\left(y+1\right)}{x^2}+\frac{\left(y+1\right)+\left(z+1\right)}{y^2}+\frac{\left(z+1\right)+\left(x+1\right)}{z^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\left(x+1\right)\left(\frac{1}{z^2}+\frac{1}{x^2}\right)+\left(y+1\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(z+1\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge\frac{2\left(x+1\right)}{zx}+\frac{2\left(y+1\right)}{xy}+\frac{2\left(z+1\right)}{yz}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2\)
Áp dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Dấu " = " xảy ra khi và chỉ khi a = b = c
Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt{3}\)
Do đó : \(Q\ge\sqrt{3}+2\). Dấu " = " xảy ra
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\\z+y+z=xyz\end{cases}\Leftrightarrow x=y=z=\sqrt{3}}\)
Vậy Min \(Q=\sqrt{3}+2\)khi \(x=y=z=\sqrt{3}\)
Áp dụng bđt Svacsơ ta có :
\(P=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{x^2}{x+z}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
ta lại có : \(\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\ge\left(xy+yz+zx\right)^2\)( bunhiacopxki )
\(\Rightarrow x^2+y^2+z^2\ge\left|xy+yz+xz\right|\ge xy+yz+xz\)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3zx\)
\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)=3\)
\(\Rightarrow x+y+z\ge\sqrt{3}\)
\(\Rightarrow P\ge\frac{x+y+z}{2}\ge\frac{\sqrt{3}}{2}\) có GTNN là \(\frac{\sqrt{3}}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
Vậy \(P_{min}=\frac{\sqrt{3}}{2}\) tại \(x=y=z=\frac{1}{\sqrt{3}}\)
\(A=\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\)
Có BĐT phụ \(\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}x^2\)
\(\Leftrightarrow\frac{\frac{-x^2\left(27x^6-54x^4+27x^2-4\right)}{4\left(x-1\right)^2\left(x+1\right)^2}}{\frac{x}{1-x^2}+\frac{3\sqrt{3}}{2}x^2}\ge0\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\frac{y}{1-y^2}\ge\frac{3\sqrt{3}}{2}y^2;\frac{z}{1-z^2}\ge\frac{3\sqrt{3}}{2}z^2\)
Cộng theo vế 3 BĐT trên ta có;
\(A\ge\frac{3\sqrt{3}}{2}\left(x^2+y^2+z^2\right)=\frac{3\sqrt{3}}{2}\)
Khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Bài này ngoài cách này còn có 1 cách khá trâu mà giờ mỏi v~ ý cần thêm thì ib
Bài làm thì m không ý kiến nhưng mà m nghĩ cái bất đẳng thức phụ bác nên chứng minh lại đi. Ai lại cố gắng làm cho nó thành 1 đống rồi khẳng định đống đó là đúng bao giờ. Làm thế thì không phải bài chứng minh rồi.