Chứng minh rằng biểu thức sau luôn dương với mọi giá trị của biến:
x2+y2-4x+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Sửa:F=4x^2-12x+11=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2>0\left(đpcm\right)\)
\(x^2+y^2-4x-2\)
\(=x^2+y^2-4x+4-6\)
\(=\left(x^2-4x+4\right)+y^2-6\)
\(=\left(x-2\right)^2+y^2-6\ge-6\)
Xem lại đề nha, kết quả vẫn có thể âm mà
Ta tách như sau: \(2x^2+8x+15=2\left(x^2+4x+4\right)+7=2\left(x+2\right)^2+7\)
Do \(\left(x+2\right)^2\ge0\Rightarrow2\left(x+2\right)^2+7\ge7>0\)
Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của biến.
\(E=2x^2+y^2-2xy-6x+12=\left(x-y\right)^2+\left(x-3\right)^2+3\ge3>0\)