\(\frac{3^{19}.2^9+5.9^9.2^9}{3^{19}.2^9+9^{10}.2^{10}}\)
Giúp mình với>>..<<:3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4^5.9^4-2.6^9}{2^{10}.3^8-6^8.20}\)
\(A=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8-\left(2.3\right)^8.2^2.5}\)
\(A=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8-2^{10}.3^8.5}\)
\(A=\frac{2^{10}.\left(3^8-3^9\right)}{2^{10}.3^8.\left(1-5\right)}=\frac{3^8-3^9}{3^8.\left(-4\right)}=\frac{3^8.\left(1-3\right)}{3^8.\left(-4\right)}=\frac{-2}{-4}=\frac{1}{2}\)
Vậy A = \(\frac{1}{2}\)
\(B=\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(B=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(B=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)
\(B=\frac{2^{19}.3^9+3^9.2^{18}.5}{2^{19}.3^9+2^{20}.3^{10}}\)
\(B=\frac{2^{18}.3^9.\left(2+5\right)}{2^{19}.3^9\left(1+2.3\right)}=\frac{7}{2.7}=\frac{1}{2}\)
Vậy B = \(\frac{1}{2}\)
1/ \(\frac{9.5^{20}.27^9-3.9^{15}.25^9}{7.3^{29}.125^6-3.3^9.15^{19}}\)
\(=\frac{5^{20}.3^{29}-3^{31}.5^{18}}{7.3^{29}.5^{18}-3^{29}.5^{19}}=\frac{3^{29}.5^{18}.\left(25-9\right)}{3^{29}.5^{18}.\left(7-5\right)}=\frac{16}{2}=8\)
CÁC BÀI CÒN LẠI TƯƠNG TỰ HẾT NHÉ E
Phân tích ra \(6^9\cdot2^{10}+12^{10}=\left(2\cdot3\right)^9\cdot2^{10}+\left(3\cdot4\right)^{10}=2^9\cdot3^9\cdot2^{10}+3^{10}\cdot\left(2^2\right)^{10}=2^{19}\cdot3^9+\left(-3\right)^{10}\cdot2^{20}\)
Ta có:
\(\frac{2^{19}.27^9+15.4^9.9^4}{6^9.2^{12}+12^{10}}=\frac{2^{19}.\left(3^3\right)^9+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{12}+\left(2^2.3\right)^{10}}\)
\(=\frac{2^{19}.3^{27}+3.5.2^{18}.3^8}{2^9.3^9.2^{12}+2^{20}.3^{10}}=\frac{2^{19}.3^{27}+3^9.2^{18}.5}{2^{21}.3^9+2^{20}.3^{10}}=\frac{2^{18}.3^9.\left(2.3^{18}+5\right)}{2^{20}.3^9.\left(2+3\right)}\)
\(=\frac{1.1.\left(2.3^{18}+5\right)}{2^2.1.5}=\frac{2.3^{18}+5}{20}\)
\(\frac{3^{19}.2^9+5.9^9.2^9}{3^{19}.2^9+9^{10}.2^{10}}\)
\(=\frac{3^{19}.2^9+5.\left(3^2\right)^9.2^9}{3^{19}.2^9+\left(3^2\right)^{10}.2^{10}}\)
\(=\frac{3^{19}.2^9+5.3^{18}.2^9}{3^{19}.2^9+3^{20}.2^{10}}\)
\(=\frac{3^{18}.2^9\left(3+5\right)}{3^{19}.2^9\left(1+6\right)}\)
\(=\frac{8}{3.7}=\frac{8}{21}\)