K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

a ) \(P=\dfrac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\)

\(P=\dfrac{x^3\left(x-1\right)-\left(x-1\right)}{x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)}\)

\(P=\dfrac{\left(x^3-1\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x^2+2\right)}=\dfrac{\left(x-1\right)^2}{\left(x^2+2\right)}\)

Với : x # 1 thì : ( x - 1)2 luôn lớn hơn hoặc bằng 0

x2 + 2 > 0 với mọi x

Suy ra : \(P=\dfrac{\left(x-1\right)^2}{\left(x^2+2\right)}>0\)( với x # 1)

b) Tương tự

1 tháng 12 2017

thanks bạn

28 tháng 8 2018

a) Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5n⋮5\) với n thuộc Z

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z

b) Ta có:

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n\)

\(=5\left(n^2+n\right)\)

\(5\left(n^2+n\right)⋮5\)

\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)

c) Ta có:

\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)

\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)

\(2\left(xy+1\right)y^{2003}⋮2\)

\(2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)

25 tháng 3 2018

e cunho tui ko ba

6 tháng 7 2019

a) Ta có: 

M = 3x(x - 5y) + (y - 5x)(-3y) - 3(x2 - y2) - 1

M = 3x2 - 15xy - 3y2 + 15xy - 3x2 + 3y2 - 1

M = (3x2 - 3x2) - (15xy - 15xy) - (3y2 - 3y2) - 1

M = -1

=> Biểu thức M có giá trị ko phụ thuộc vào biến x,y

b) Ta có: S = 1 + x + x2 + x3 + x4 + x5

x.S = x(1 + x + x2 + x3 + x4 + x5)

x.S = x + x2 + x3 + x4 + x5 + x6

xS - S = (x + x2 + x3 + x4 + x5 + x6) - (1 + x + x2 + x3 + x4 + x5)

xS - S = x6 - 1 => đpcm

6 tháng 7 2019

a) M = 3x(x - 5y) + (y - 5x)(-3y) - 3(x2 - y2) - 1

M = 3x.x + 3x.(-5y) + y.(-3y) + (-5x).(-3y) + (-3).x+ (-3).x+ (-3).(-y2) - 1

M = 3x2 - 15xy - 3y2 + 15xy - 3x2 + 3y2 - 1

M = (3x2 - 3x2) + (-15xy + 15xy) + (-3y2 + 3y2) - 1

M = 0 + 0 - 1

M = -1

Vậy: biểu thức không phụ thuộc vào x và y

`@` `\text {Ans}`

`\downarrow`

`a,`

\(125- (x + 1) ^ 2 + x ^ 2 - (- 2x + 3)\)

`= 125 - x^2 -2x - 1 + x^2 + 2x - 3`

`= (125 - 1 - 3) + (-x^2 + x^2) + (-2x+2x)`

`= 121`

Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.

`b,`

\(150-(x-y)(x+y)+x^2-y^2\)

`= 150 - [ x(x+y) - y(x+y)] + x^2 - y^2`

`= 150 - (x^2 + xy - xy - y^2) + x^2 - y^2`

`= 150 - (x^2 - y^2) + x^2 - y^2`

`= 150 - x^2 + y^2 + x^2 - y^2`

`= 150`

Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.

30 tháng 6 2023

\(a,125-\left(x+1\right)^2+x^2-\left(-2x+3\right)\\ =125-x^2-2x-1+x^2+2x-3\)

\(=\left(-x^2+x^2\right)+\left(-2x+2x\right)+\left(125-1-3\right)\\ =121\)

\(b,150-\left(x-y\right)\left(x+y\right)+x^2-y^2\\ =150-\left(x^2-y^2\right)+x^2-y^2\\ =150-x^2+y^2+x^2-y^2\\ =150+\left(-x^2+x^2\right)+\left(-y^2+y^2\right)\\ =150\)