K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 10 2019

Copy paste lại bài hôm rồi, đỡ phải nghĩ:v

Ta chứng minh bổ đề sau: cho hai dãy số dương \(a\ge b\ge c\)\(x\ge y\ge z\) thì \(ax+by+cz\ge bx+cy+az\)

Thật vậy, BĐT tương đương:

\(\left(a-b\right)x+\left(b-c\right)y-\left(a-c\right)z\ge0\)

\(\Leftrightarrow\left(a-b\right)x-\left(a-b\right)y+\left(a-c\right)y-\left(a-c\right)z\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(x-y\right)+\left(a-c\right)\left(y-z\right)\ge0\) (luôn đúng)

Áp dụng:

Không mất tính tổng quát, giả sử \(a\ge b\ge c\Rightarrow\left\{{}\begin{matrix}a^3\ge b^3\ge c^3\\\frac{1}{b^2+c^2}\ge\frac{1}{c^2+a^2}\ge\frac{1}{a^2+b^2}\end{matrix}\right.\)

\(\Rightarrow P=\frac{a^3}{b^2+c^2}+\frac{b^3}{c^2+a^2}+\frac{c^3}{a^2+b^2}\ge\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}+\frac{a^3}{a^2+b^2}\)

Ta có: \(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)

Thiết lập tương tự và cộng lại:

\(P\ge\frac{1}{2}\left(a+b+c\right)^2=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

21 tháng 2 2020

\(\frac{a}{b^2+1}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}\ge a-\frac{ab}{2}\)  (AM-GM)

chung minh tuong tu ta co 

\(VT\ge a+b+c-\frac{ab}{2}-\frac{bc}{2}-\frac{ac}{2}\ge3-\frac{\left(a+b+c\right)^2}{6}\ge3-\frac{3}{2}=\frac{3}{2}\)

dau = xay ra khi a=b=c=1

22 tháng 8 2020

Trước hết ta chứng minh bất đẳng thức sau \(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)

Thật vậy, bất đẳng thức trên tương đương với \(\left(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\right)^2\ge\left(a+x\right)^2+\left(b+y\right)^2\)\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\ge2ax+2by\Leftrightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

Bất đẳng thức cuối cùng là bất đẳng thức Bunyakovsky nên (*) đúng

Áp dụng bất đẳng thức trên ta có \(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2}+\sqrt{c^2+\frac{1}{a^2}}\)\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)

Ta cần chứng minh  \(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\frac{153}{4}\)

Thật vậy, áp dụng bất đẳng thức Cauchy và chú ý giả thiết \(a+b+c\le\frac{3}{2}\), ta được:\(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}\)\(=\left(a+b+c\right)^2+\frac{81}{16\left(a+b+c\right)^2}+\frac{1215}{16\left(a+b+c\right)^2}\)\(\ge2\sqrt{\left(a+b+c\right)^2.\frac{81}{16\left(a+b+c\right)^2}}+\frac{1215}{16.\frac{9}{4}}=\frac{153}{4}\)

Bất đẳng thức đã được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

7 tháng 9 2019

Mình dùng ''AM-GM ngược dấu'' như sau

Áp dụng bất đẳng thức AM-GM ta có \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự với các phân thức khác rồi cộng vế theo vế ta được:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)=3-\left(\frac{ab}{2}+\frac{bc}{2}+\frac{ca}{2}\right)\)

Mặt khác áp dụng bất đẳng thức AM-GM  \(9=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca\le\frac{3}{2}\)

Vậy \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{3}{2}=\frac{3}{2}\)

bạn ơi đoạn cuối áp dụng BĐT AM-GN  mk chưa hiểu lắm

28 tháng 10 2017

Đặt \(\frac{1}{a}=x\)\(\frac{2}{b}=y;\frac{3}{c}=z\)

=>VT = \(\frac{z^3}{x^2+z^2}+\frac{x^3}{y^2+x^2}+\frac{y^3}{y^2+z^2}\)

Ta có \(\frac{z^3}{x^2+z^2}=z-\frac{x^2z}{x^2+z^2}\ge z-\frac{x^2z}{2xz}=z-\frac{x}{2}\)

CMTT: 

=> VT \(\ge\frac{x+y+z}{2}=\frac{3}{2}\). Dấu = khi a=1; b=2; z=3

4 tháng 7 2020

\(\frac{a^3}{b^2+3}=\frac{a^3}{b^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(b+c\right)}\)

Tương tự

\(\Rightarrow\Sigma_{cyc}\frac{a^3}{b^2+3}=\Sigma_{cyc}\frac{a^3}{\left(a+b\right)\left(b+c\right)}\)

Theo Cô-si:\(\frac{a^3}{\left(a+b\right)\left(b+c\right)}+\frac{a+b}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)

\(\Rightarrow\Sigma_{cyc}\frac{a^3}{\left(a+b\right)\left(b+c\right)}\ge\frac{1}{4}\left(a+b+c\right)\ge\frac{1}{4}\sqrt{3\left(ab+bc+ca\right)}=\frac{3}{4}\)