Chứng minh rằng giá trị của biểu thức M = 3 - x^2 + xy - 3y^2 không lớn hơn 3 với mọi giá trị của x , y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-xy+y^2=x^2-2.x.\frac{1}{2}y+\left(\frac{1}{2}y\right)^2+\frac{3y^2}{4}\)\(=\left(x-\frac{1}{2}y\right)^2+\frac{3y^2}{4}\ge0\) với mọi x,y.
Trả lời :
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến M = ( x2y - 3 )2 - ( 2x-y)3 +xy2( 9-x3 ) + 8x3 - 6x2y - y3
Đè bài đó mọi người mk viết lại cho mn nhìn rõ
Hãy cùng giúp bạn ấy nào
\(14,P=x^2+xy+y^2-3x-3y+3\\ P=\left(x^2+xy+\dfrac{1}{4}y^2\right)-3\left(x+\dfrac{1}{2}y\right)+\dfrac{3}{4}y^2-\dfrac{3}{2}y+3\\ P=\left(x+\dfrac{1}{2}y\right)^2-3\left(x+\dfrac{1}{2}y\right)+\dfrac{9}{4}+\dfrac{3}{4}\left(y^2-2y+1\right)\\ P=\left(x+\dfrac{1}{2}y-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2\ge0\)
Với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y các phân thức có nghĩa. Ta có
\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)\(=\)\(\frac{5x\left(2x-3y\right)^2.y\left(2x^2+5xy+3y^2\right)}{3y\left(4x^2-9y^2\right).2x\left(x+y\right).\left(2x-3y\right)}\)
\(=\)\(\frac{10xy\left(2x-3y\right)^2.\left(2x^2+2xy+3xy+3y^2\right)}{6xy\left(2x-3y\right).\left(2x+3y\right)\left(x+y\right)\left(2x-3y\right)}\)\(=\)\(\frac{10xy\left(2x-3y\right)^2\left(x+y\right).\left(2x+3y\right)}{6xy\left(2x-3y\right)^2.\left(2x+3y\right).\left(x+y\right)}\)
\(=\)\(\frac{5}{3}\)
ĐK \(\hept{\begin{cases}xy\ne0\\2x-3y\ne0,2x+3y\ne0\\x\ne-y\end{cases}}\)
\(=\frac{5x\left(2x-3y\right)^2}{3y\left(2x+3y\right)\left(2x-3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{xy\left(2x+3y\right)+y^2\left(2x+3y\right)}\)
\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{\left(2x+3y\right)\left(xy+y^2\right)}\)
\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}.\frac{y\left(x+y\right)\left(2x+3y\right)}{2x\left(x+y\right)\left(2x-3y\right)}=\frac{5}{6}\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
\(\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
\(=x^3+y^3+x^3-y^3-2x^3\)
\(=2x^3-2x^3\)
\(=0\)
VẬY BIỂU THỨC TRÊN KO PHỤ THUỘC VÀO BIẾN X,Y
\(\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
\(=x^3+y^3+x^3-y^3-2x^3=0\)=> DPCM.
Lời giải:
Ta có:
\(M=3-x^2+xy-3y^2=3-(x^2-xy+3y^2)=3-[(x^2-xy+\frac{y^2}{4})+\frac{11}{4}y^2]\)
\(=3-[(x-\frac{y}{2})^2+\frac{11}{4}y^2]\)
Vì \((x-\frac{y}{2})^2\geq 0; \frac{11}{4}y^2\geq 0, \forall x,y\in\mathbb{R}\)
\(\Rightarrow (x-\frac{y}{2})^2+\frac{11}{4}y^2\geq 0\Rightarrow M=3-[(x-\frac{y}{2})^2+\frac{11}{4}y^2]\leq 3\)
Ta có đpcm.