Cho hình chữ nhật ABCD. Kẻ BP vuông góc AC ở K.Gọi M và N là trung điểm AP và CD. Kẻ CQ vuông góc BM ởng góc MNQ cắt BP ở E'
1, Tứ Giác MNCE là hình gì?
2 CM: Bm vuông góc MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ∆MBC có hai đường cao BP và CQ cắt nhau tại E nên E là trực tâm của tam giác => ME là đường cao thứ ba => ME⊥BC (đpcm)
b) ABCD là hình chữ nhật (1) nên AB⊥BC kết hợp với ME⊥BC => ME // AB (2) mà M là trung điểm của AP nên E là trung điểm của BP => ME là đường trung bình của ∆APB => ME = 1/2AB và NC = 1/2CD (gt) nên ME = NC (do AB = CD)
Từ (1) và (2) suy ra ME//NC
Tứ giác MNCE có ME = NC và ME//NC nên là hình bình hành
c) Tứ giác MNCE là hình bình hành nên ^NMC = ^MCE
Mà ^MCE + ^CMQ = 900 (∆MCQ vuông tại Q) nên ^NMC + ^CMQ = 900 => NMQ = 900 => BM vuông góc với MN (đpcm)
Cho hình chữ nhật ABCD. Kẻ BP vuông góc AC ở P.Gọi M và N là trung điểm AP và CD. Kẻ CQ vuông góc BM ở Q và cắt BP ở E ' 1, Tứ Giác MNCE là hình gì? 2 CM: Bm vuông góc MN
a, Xét tam giác BMC có CE vuông góc với BM , BE vuông góc với CM
=> E là trực tâm của tam giác BMC
=> ME vuông góc với BC mà AB vuông góc với BC
=> ME song song với AB
Xét tam giác BMC có AM=MP , ME song song vói AB
=> BE = PE => ME là đg trung bình của tam giác BMC
=> ME song song và bằng 1/2 AB mặt khác CN= 1/2 CD mà CD song song và bằng AB
=> NC song song và bằng ME=> MECN là hbh
b, Vì CE vuông góc với BM mà MN song song với CE
=> MN vuông góc với BM