Cho phân thức P(x)=5x^2/(x^6+x^5-x^3-5x^2-4x+1). Chứng minh rằng tồn tại một đa thức Q(x) với các hệ số nguyên sao cho Q(x0)=P(x0) với mọi x0 là nghiệm của đa thức R(x)=x^8_x^4+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: \(P\left(-1\right)=-3-5-4+2+6+4=0\)
Vậy: x=-1 là nghiệm của P(x)
\(Q\left(-1\right)=4+1+3+2-7+1=4< >0\)
=>x=-1 không là nghiệm của Q(x)
Gỉa sử P(x) có một nghiệm nguyên là \(x_0\left(x_0\ne0\right)\)
Ta có \(P\left(x\right)=a_nx_0^n+a_{n-1}x_0^{n-1}+...+a_1x_0+a_0=0.\)
Như vậy \(P\left(x_0\right)=0⋮x_0\)và các số hạng \(a_nx_0^n+a_{n-1}x_0^{n-1}+...+a_1x_0\)đều chia hết cho \(x_0\), suy ra \(a_0\)cũng phải chia hết \(x_0\)tức \(x_0\)là ước của \(a_0\)
a) \(P\left(x\right)=3x^5+5x-4x^4-2x^3+6+4x^2\)
\(P\left(x\right)=3x^5-4x^4-2x^3+5x+6+4\)
\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=\left(3x^5-4x^4-2x^3+4x^2+5x+6\right)+\left(-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=3x^5-4x^4-2x^3+4x^2+5x+6-x^5+2x^4-2x^3+3x^2-x\)
\(P\left(x\right)+Q\left(x\right)=2x^5-2x^4-4x^3+7x^2-4x+6\)
\(P\left(x\right)-Q\left(x\right)=\left(3x^5-4x^4-2x^3+4x^2+5x+6\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=3x^5-4x^4-2x^3+4x^2+5x+6-x^5-2x^4+2x^3-3x^2+x\)
\(P\left(x\right)-Q\left(x\right)=2x^5-6x^4+x^2+6x+6\)
P/S : Câu trên mình sắp xếp sai phần P(x) nha. Tại nhìn nhìn 4x^2 mà tưởng là 4.
x0 là gì bạn
là x0 đó bạn