K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

x-3=k^2

x=k^2+3

x+1-k=t^2

k^2+4-k=t^2

(2k-1)^2+15=4t^2

(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5

---giải phương trình nghiệm nguyên với k,t---

TH1. [2(k-t)-1][2(k+t)-1]=-1.15

2(k-t)-1=-1=> k=t

4t-1=15=>t=4    nghiệm (-4) loại luôn

với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận

TH2. mà có bắt tìm hết đâu

x=19 ok rồi

24 tháng 10 2016

ô hay vừa giải xong mà

x=k^2+3

với k là nghiệm nguyên của phương trình

k^2-k+4=t^2

bắt tìm hết hạy chỉ một

x=19 là một nghiệm 

4 tháng 3 2019

A=2(n-5)+11/n-5=2+11/n-5

để A là 1 số nguyên thì 11 chia hết cho n-5

hay n-5 thuộc ước của 11

n-5 thuộc 11;-11;1;-1

n thuộc 16;-6;6;4

kl:.....

4 tháng 3 2019

Muốn A là số nguyên thì 2n + 1 chia hết cho n - 5

Suy ra 2n - 10 + 11 chia hết cho n - 5

Suy ra 2(n - 5) + 11 chia hết cho n - 5

Suy ra 11 chia hết cho n - 5

Suy ra n - 5 là ước của 11

Còn lại bạn làm nốt. Mình ngại làm lắm.

6 tháng 7 2016

2.

\(\frac{3n+9}{n-4}\in Z\)

\(\Rightarrow3n+9⋮n-4\)

\(\Rightarrow3n-12+21⋮n-4\)

\(\Rightarrow3\times\left(n-4\right)+21⋮n-4\)

\(\Rightarrow21⋮n-4\)

\(\Rightarrow n-4\inƯ\left(21\right)\)

\(\Rightarrow n-4\in\left\{-7;-3;-1;1;3;7\right\}\)

\(\Rightarrow n\in\left\{-3;1;3;5;7;11\right\}\)

\(B=\frac{6n+5}{2n-1}\in Z\)

\(\Rightarrow6n+5⋮2n-1\)

\(\Rightarrow6n-3+8⋮2n-1\)

\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)

\(\Rightarrow8⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(8\right)\)

\(\Rightarrow2n-1\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(\Rightarrow2n\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)

\(n\in Z\)

\(\Rightarrow n\in\left\{0;1\right\}\)

 

6 tháng 7 2017

a) ĐK: x - 7 < 0
   <=> x      < 7
Vậy x < 7

b) ĐK: x2 + 2x + 3 >= 0
   <=> x2 + 2x + 1 + 2 >= 0
   <=> (x + 1)2 + 2 >= 0 (đúng)
Vậy x\(\in\)R

13 tháng 4 2017

a) Ta có:\(\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=\frac{n+5}{n+5}-\frac{7}{n+5}=1-\frac{7}{n+5}\)

Để A nguyên thì (n+5) \(\in\)Ư(7)={1;-1;7;-7)

Ta có bảng sau:

n+51-17-7
n-442-12

Vậy n \(\in\){-4;4;2;-12} để A là số nguyên

Để (2x+2)/(x+3) là số nguyên thì \(x+3\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{-2;-4;-1;-5;1;-7\right\}\)

5 tháng 1 2022

\(\dfrac{2x+2}{x+3}=\dfrac{2\left(x+3\right)-4}{x+3}=2-\dfrac{4}{x+3}\in Z\\ \Leftrightarrow x+3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Leftrightarrow x\in\left\{-7;-5;-4;-2;-1;1\right\}\)