Cho a2 + b2 + c2 = m
Tính GTBT sau theo m
A = ( 2a + 2b + c )2 + ( 2b + 2c - a )2 + ( 2c + 2a - b)2
AI GIẢI NHANH VÀ ĐÚNG MIK SẼ TICK
GIÚP MIK VỚI, MIK ĐANG CẦN GẤP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(a+b+c=t\)
\(A=(2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2\)
\(=(2a+2b+2c-3c)^2+(2b+2c+2a-3a)^2+(2c+2a+2b-3b)^2\)
\(=(2t-3c)^2+(2t-3a)^2+(2t-3b)^2\)
\(=4t^2+9c^2-12tc+4t^2+9a^2-12ta+4t^2+9b^2-12tb\)
\(=12t^2+9(a^2+b^2+c^2)-12t(a+b+c)\)
\(=12t^2+9m-12t^2=9m\)
\(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)
\(A=\left(2a+2b+2c-3c\right)^2+\left(2b+2c+2a-3a\right)^2+\left(2c+2a+2b-3b\right)^2\)
\(A=\left[2.\left(a+b+c\right)-3c\right]^2+\left[2.\left(a+b+c\right)-3a\right]^2+\left[2.\left(a+b+c\right)-3b\right]^2\)
Đặt \(a+b+c=n\)
\(\Rightarrow A=\left(2n-3c\right)^2+\left(2n-3a\right)^2+\left(2n-3b\right)\)
\(A=4n^2-12cn+9c^2+4n^2-12an+9a^2+4n^2-12bn+9b^2\)
\(A=12n.\left(n-a-b-c\right)+9.\left(a^2+b^2+c^2\right)\)
Ta có: \(a^2+b^2+c^2=m\)
\(\Rightarrow A=12.\left(a+b+c-a-b-c\right)+9m\)
\(A=9m\)
Vậy \(A=9m\)tại \(a^2+b^2+c^2=m\)
Tham khảo nhé~
Ta có : \(\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c}\)(sửa lại đề) (1)
=> \(\frac{2y+2z-x}{a}=\frac{4b+4x-2y}{2b}=\frac{4x+4y-2z}{2c}\)
= \(\frac{4z+4x-2y+4x+4y-2z-2y-2z+x}{2b+2c-a}=\frac{9x}{2b+2c-a}\)(dãy tỉ số bằng nhau) (2)
Từ (1) => \(\frac{4y+4z-2x}{2a}=\frac{2z+2x-y}{b}=\frac{4x+4y-2z}{2c}\)
= \(\frac{4x+4y-2z+4y+4z-2x-2z-2x+y}{2c+2a-b}=\frac{9y}{2c+2a-b}\)(dãy tỉ số bằng nhau) (3)
Từ (1) có : \(\frac{4y+4z-2x}{2a}=\frac{4z+4x-2y}{2b}=\frac{2x+2y-z}{c}=\frac{4y+4z-2x+4z+4x-2y-2x-2y+z}{2a+2b-c}\)\(=\frac{9z}{2a+2b-c}\)(dãy tỉ số bằng nhau) (4)
Từ (2) ; (3) ; (4) => điều phải chứng minh
Em làm tương tự như link bên dưới chỉ thay m =2019.
Câu hỏi của Chi Chi - Toán lớp 8 - Học toán với OnlineMath
\(VT=\dfrac{a^2}{b+ab^2c}+\dfrac{b^2}{b+abc^2}+\dfrac{c^2}{c+a^2bc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}=\dfrac{9}{3+3abc}\)
\(VT\ge\dfrac{9}{3+\dfrac{\left(a+b+c\right)^3}{9}}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Sửa đề: Cho \(a^2+b^2+c^2=m\)
Tính: \(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)
Giải:
Ta có: \(\left(x+y-z\right)^2=\left(x+y\right)^2-2\left(x+y\right).z+z^2=x^2+y^2+z^2+2xy-2xz-2yz\)
Ứng dụng vào bài trên:
\(A=\left[\left(2a\right)^2+\left(2b\right)^2+c^2+2\left(2a\right)\left(2b\right)-2\left(2a\right)c-2\left(2b\right)c\right]\)
\(+\left[\left(2b\right)^2+\left(2c\right)^2+a^2+2\left(2b\right)\left(2c\right)-2\left(2b\right)a-2\left(2c\right)a\right]\)
\(+\left[\left(2c\right)^2+\left(2a\right)^2+b^2+2\left(2c\right)\left(2a\right)-2\left(2c\right)b-2\left(2a\right)b\right]\)
\(=4a^2+4b^2+c^2+8ab-4ac-4bc\)
\(+4b^2+4c^2+a^2+8bc-4ba-4ca\)
\(+4c^2+4a^2+b^2+8ca-4cb-4ab\)
\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)
\(=9m\).