K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 1 2022

Đặt \(2\sqrt{x+1}+\sqrt{4-x}=t\Rightarrow t^2-4=3x+4+4\sqrt{-x^2+3x+4}\)

Ta có:

\(2\sqrt{x+1}+\sqrt{4-x}\le\sqrt{\left(4+1\right)\left(x+1+4-x\right)}=5\)

\(\sqrt{x+1}+\sqrt{x+1}+\sqrt{4-x}\ge\sqrt{x+1}+\sqrt{x+1+4-x}\ge\sqrt{5}\)

\(\Rightarrow\sqrt{5}\le t\le5\)

Phương trình trở thành:

\(t^2-4=mt\) \(\Leftrightarrow f\left(t\right)=t^2-mt-4=0\)

\(ac=-4< 0\Rightarrow pt\) luôn có 2 nghiệm trái dấu (nghĩa là đúng 1 nghiệm dương)

Vậy để pt có nghiệm thuộc \(\left[\sqrt{5};5\right]\Rightarrow x_1< \sqrt{5}\le x_2\le5\)

\(\Rightarrow f\left(\sqrt{5}\right).f\left(5\right)\le0\)

\(\Rightarrow\left(1-\sqrt{5}m\right)\left(21-5m\right)\le0\)

\(\Rightarrow\dfrac{\sqrt{5}}{5}\le m\le\dfrac{21}{5}\)

NV
19 tháng 1 2022

2.

Chắc đề đúng là "tìm m để giá trị nhỏ nhất của hàm số đạt giá trị lớn nhất"

Hàm bậc 2 có \(a=2>0\Rightarrow y_{min}=-\dfrac{\Delta}{4a}=-\dfrac{9\left(m+1\right)^2-8\left(m^2+3m-2\right)}{8}=-\dfrac{m^2-6m+25}{8}\)

\(\Rightarrow y_{min}=-\dfrac{1}{8}\left(m-3\right)^2-2\le-2\)

Dấu "=" xảy ra khi \(m-3=0\Rightarrow m=3\)

NV
16 tháng 1 2021

\(y\le\sqrt{2\left(6-2x+3+2x\right)}=3\sqrt{2}\)

\(y_{max}=3\sqrt{2}\) khi \(x=\dfrac{3}{4}\)

\(y\ge\sqrt{6-2x+3+2x}=3\)

\(y_{min}=3\) khi \(\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{2}\end{matrix}\right.\)

19 tháng 2 2019

* Hàm số đã cho liên tục trên R vì với Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 nên (1) đúng

* Tại điểm x = 0 hàm số không có đạo hàm nên (2) sai.

* y = x 2 - 2 | x | + 2 = | x | 2 - 2 | x | + 2 = ( | x | - 1 ) 2 + 1 ≥ 1 ∀ x

Suy ra, GTNN của hàm số là 1 khi |x| = 1 ⇔ x = ±1

nên hàm số không có GTLN.

* Phương trình x 2 - 2 | x | + 2 = 0  vô nghiệm nên đồ thị không cắt trục hoành.

f ( - x ) = ( - x ) 2 - 2 | - x | + 2 = x 2 - 2 | x | + 2 = f ( x )

Nên hàm số đã cho là hàm số chẵn.

Mệnh đề 1, 5 đúng. Mệnh đề 2, 3,4,6 sai.

Chọn B

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lời giải:
TXĐ: $[-1;1]$

$y'=\frac{1}{2\sqrt{x+1}}-\frac{1}{2\sqrt{1-x}}+\frac{x}{2}$

$y'=0\Leftrightarrow x=0$

$f(0)=2$;

$f(1)=f(-1)=\sqrt{2}+\frac{1}{4}$
Vậy $f_{\min}=2; f_{\max}=\frac{1}{4}+\sqrt{2}$