K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2019

minh dang can gap

3 tháng 2 2019

Toi quen mat cach  lam roi xin loi nhe

6 tháng 12 2016

1. A = 2 + 22 + 23 + 24 + ... + 260

A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )

A = 2 ( 1 + 2 + 22 ) + 24 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )

A = 2 . 7 + 24 . 7 + ... + 258 . 7

A = ( 2 + 24 + ... + 258 ) . 7 => A \(⋮\)7

Vậy ...

2.Ta có : \(n+4⋮n+1\)

Mà : \(n+1⋮n+1\)

\(\Rightarrow\left(n+4\right)-\left(n+1\right)⋮n+1\Rightarrow n+4-n-1⋮n+1\)

\(\Rightarrow3⋮n+1\Rightarrow n+1\in\left\{1;3\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\)

3. Đặt B = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27

B = ( 1 + 2 ) + ( 22 + 23 ) + ( 24 + 25 ) + ( 26 + 27 )

B = ( 1 + 2 ) + 22 ( 1 + 2 ) + 24 ( 1 + 2 ) + 26 ( 1 + 2 )

B = 1 . 3 + 22 . 3 + 24 . 3 + 26 . 3

B = ( 1 + 22 + 24 + 26 ) . 3 \(\Rightarrow\) B \(⋮\)3

Vậy ...

6 tháng 12 2016

ban nay hoc gioi qua

 

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

28 tháng 2 2018

Có 13 giao thừa = 1.2.3.4.5.6.7.8.9.10.11.12.13 chia hết cho 2

Có 11 giao thừa = 1.2.3.4.5.6.7.8.9.10.11 chia hết cho 2

suy ra 13 giao thừa - 11 giao thừa chia hết cho 2

xin các bạn k cho mình nhé

8 tháng 2 2019

3

a+5b=a-b+6b 

vì: 

a-b và 6b cùng chia hết cho 6 nên: a+5b chia hết cho 6 (đpcm)

b) a-13b=a-b-12b vì a-b và 12b cùng chia hết cho 6

=> a-13b chia hết cho 6 (đpcm)

8 tháng 2 2019

1a) Tra mạng nhé cậu

b) gọi số cần tìm là: a (a E N)

Ta có:

a=11x+6=4y+1=19z+11 (x,y,z E N)

=> a+27=11x+33=4y+28=19z+38

=> a+27 chia hết cho 11;4;19

=> a+27 E {836;1672;........} (loại 0 vì: a+27>0)

=> a E {809;1655;........} mà a nhỏ nhất nên: a=809

Vậy: a=809

10 tháng 10 2017

tổng 5 chữ sô chữ nhiên liên tiếp vẫn chia hết cho 5 sao mà chứng minh được \(VD:1+2+3+4+5=15⋮5\)

10 tháng 10 2017

Gọi 3 số tự nhiên liên tiếp là a , b , c

a = x . 3 

b = x . 3 + 1

c = x . 3 + 2 

Tổng của chúng là x . 3 + x . 3 + 1 + x . 3 + 2 = x . 3 . 3 + 1 + 2 = x . 3 . 3 + 3 = x . 9 + 3

Các số hạng của tổng đều chia hết cho 3 

=> x . 9 + 3 chia hết cho 3 <=> tổng của 3 số tự nhiên liên tiếp chia hết cho 3 

b ) Tương tự câu đầu

3 tháng 8 2016

\(a,n^5-n=n.\left(n^4-1\right)=n.\left(n^2-1\right).\left(n^2+1\right)\)

\(=n.\left(n^2-1\right).\left(n^2-4+5\right)\)

\(=n.\left(n^2-1\right).\left(n^2-4\right)+5n.\left(n^2-1\right)\)

\(=n.\left(n-1\right).\left(n+1\right).\left(n-2\right).\left(n+2\right)+5n.\left(n-1\right).\left(n+1\right)\)
\(=\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\)

Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1=>(n-1).n.(n+1) chia hết cho 6

=>5.(n-1).n.(n+1) chia hết cho (5.6)=30  (1)

Vì (n-2).(n-1).n.(n+1).(n+2) là tích của 5 số nguyên liên tiếp nên chia hết cho 5 và 6

Mà (5;6)=1=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 30  (2)

Từ (1);(2)=> (n-2).(n-1).n.(n+1).(n+2)+5(n-1).n.(n+1) chia hết cho 30

=>n5-n chia hết cho 30 (đpcm)

\(b,\left(n^2+n-1\right)^2-1=\left(n^2+n-1-1\right).\left(n^2+n-1+1\right)\)

\(=\left(n^2+n-2\right).\left(n^2+n\right)=\left(n^2+2n-n-2\right).n.\left(n+1\right)\)

\(=\left[n\left(n+2\right)-\left(n+2\right)\right].n.\left(n+1\right)=\left(n+2\right)\left(n-1\right).n.\left(n+1\right)\)

\(=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)

Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp mà trong 4 số nguyên liên tiếp cũng có 3 số nguyên liên tiếp

=>(n-1).n.(n+1).(n+2) chia hết cho 3 (3)

Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp nên chia hết cho 8 (4)

Từ (3);(4);lại có (3;8)=1

=>(n-1).n.(n+1).(n+2) chia hết cho 24

=>(n2+n-1)2-1 chia hết cho 24 (đpcm)