K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

\(\sin\widehat{C}=\dfrac{AB}{BC}=\sin35^0\approx0,6\Leftrightarrow AB=0,6\cdot6=3,6\left(cm\right)\\ \Leftrightarrow AC=\sqrt{BC^2-AB^2}=4,8\left(cm\right)\)

Bài 5: 

a) Xét ΔABC vuông tại A có 

\(AC=AB\cdot\cot\widehat{C}\)

\(=21\cdot\cot40^0\)

\(\simeq25,03\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)

hay \(BC\simeq32,67\left(cm\right)\)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

NV
23 tháng 6 2021

Áp dụng định lý Pitago cho tam giác vuông ACH:

\(AC=\sqrt{AH^2+HC^2}=10\left(cm\right)\)

Áp dụng hệ thức lượng cho tam giác vuông ABC:

\(AC^2=CH.BC\Rightarrow BC=\dfrac{AC^2}{CH}=\dfrac{25}{2}\) (cm)

\(\Rightarrow BH=BC-CH=\dfrac{9}{2}\left(cm\right)\)

Pitago tam giác vuông ABC:

\(AB=\sqrt{BC^2-AC^2}=\dfrac{15}{2}\left(cm\right)\)

b.

Áp dụng hệ thức lượng cho tam giác vuông ACH:

\(HD.AC=AH.HC\Rightarrow HD=\dfrac{AH.HC}{AC}=\dfrac{24}{5}\left(cm\right)\)

Tiếp tục là hệ thức lượng:

\(AH^2=AD.AC\Rightarrow AD=\dfrac{AH^2}{AC}=\dfrac{18}{5}\left(cm\right)\)

\(S_{AHD}=\dfrac{1}{2}AD.HD=\dfrac{216}{25}\left(cm^2\right)\)

NV
23 tháng 6 2021

undefined

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

24 tháng 1 2018

Câu hỏi của Lê Thu Phương Anh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

30 tháng 11 2021

j