cho hình bình hành ABCD. có d là đường thẳng ko cắt cạng nào của hình bình hành , gọi O là giao điểm 2 đường chéo AB,CD. gọi A', B', C', D' lần lượt là hình chiếu của AB,CD trên d. c/m AA'+CC'=BB'+DD'( mn ơi giúp mik với mik cần gấp)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DM
23 tháng 6 2017
CẬU LÀ nguyễn thị diệu linh phải không tớ là vũ đức mạnh đây trường thcs văn lang hả
5 tháng 11 2014
(hình bạn tự vẽ nha)CM:
- gọi giao điểm của hai đường chéo là O
- mà tứ giác ABCD là hình bình hành(gt)
- =>\(OA=OC=\frac{1}{2}ACvàOD=OB=\frac{1}{2}BD\)
- kẻ OO' vuông góc với d
- ta có:OO',AA',BB',CC',DD' vuông góc với d nên OO',AA',BB',CC',DD' song song với nhau
cm OO' là đường trung bình của hình thang BB'D'D=>\(OO'=\frac{BB'+DD'}{2}\left(1\right)\)
- chứng minh OO' là đường trung bình của hình thang AA'C'C=>\(OO'=\frac{AA'+CC'}{2}\left(2\right)\)
- từ (1) và (2)=>\(\frac{AA'+CC'}{2}=\frac{BB'+DD'}{2}\Rightarrow AA'+CC'=BB'+D'D\)