K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

A B C M Y Y' X P Q N K L (O ) 1 (O ) 2

Dựng một đường tròn đi qua M và X đồng thời tiếp xúc với BC, đường tròn đó cắt (O1) tại Y' khác M.

Gọi Y'M và XM cắt đường tròn (AXY') lần lượt tại K và L (K khác Y'; L khác X); BC cắt (O1);(O2) tại P,Q; QX cắt PY' tại N

Ta có ^AXN = 1800 - ^AXQ = 1800 - ^AMQ = ^AMP = ^AY'N, suy ra N thuộc đường tròn (AXY')

Do vậy ^AKM = ^ANP mà ^AMK = ^APN nên \(\Delta\)KAM ~ \(\Delta\)NAP (g.g) suy ra AK.AP = AM.AN

Tương tự \(\Delta\)MAL ~ \(\Delta\)QAN (g.g) thì AL.AQ = AM.AN. Từ đó AK.AP = AL.AQ, dễ có \(\Delta\)LAK ~ \(\Delta\)PAQ (*)

Vì ^XMQ = ^XY'M = ^MLK nên KL // PQ, kết hợp với (*) suy ra (AL,AP) = (AK,AQ) = (KL,PQ) = 0o

Từ đây P,L,A thẳng hàng và Q,K,A thẳng hàng. Khi đó PL.PA = PN.PY'; QK.QA = QX.QN   (1)

Mặt khác \(\frac{KM}{NP}=\frac{AK}{AN};\frac{LM}{NQ}=\frac{AL}{AN}\Rightarrow\frac{AK}{AL}=\frac{KM}{NP}.\frac{NQ}{LM}\Rightarrow\frac{QN}{PN}=\frac{AK}{AL}.\frac{LM}{KM}\) (2)

Từ (1) và (2) suy ra \(\frac{QX.QN}{PN.PY'}=\frac{QX}{PY'}.\frac{AK}{AL}.\frac{LM}{KM}=\frac{QK.QA}{PL.PA}\Rightarrow\frac{QX}{PY'}.\frac{LM}{KM}=\frac{AK}{AL}\)

\(\Leftrightarrow\frac{QX}{PY'}=\frac{AK}{AL}.\frac{KM}{LM}\Rightarrow\frac{QX.AM}{PY'.AM}=\frac{AQ.MX}{AP.MY'}\)

Chú ý rằng tứ giác AQXM là tứ giác điều hòa, như vậy PY'.AM = AP.MY'. Suy ra tứ giác APY'M điều hòa

Ta thấy tiếp tuyến tại A của (O1) cắt AM tại C, do đó CY' cũng là tiếp tuyến của (O1)

Lại có CY là tiếp tuyến từ C đến (O1) nên Y trùng Y'. Vậy (MXY) tiếp xúc với BC tại M (đpcm).

26 tháng 1 2018

Không ai trả lời không có nghĩa là mày  được spam, ok ?

26 tháng 1 2018

If mày định trình bày một idea nào đó, mày should dùng brain của mày 

28 tháng 1 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo tính chất của hai tiếp tuyến cắt nhau ta có :

DB = DM

EM = EC

Chu vi của tam giác ADE bằng :

AD + DE + EA = AD + DM + ME + EA

= AD + DB + AE + EC = AB + AC = 2AB

Mà tứ giác ABOC là hình vuông (chứng minh trên) nên:

AB = OB = 2 (cm)

Vậy chu vi của tam giác ADE bằng: 2.2 = 4 (cm)

1: I là tâm đường tròn nội tiếp

QB=QC

=>QB=QI

=>ΔQBI cân tạiQ

2: Xet ΔAMI và ΔANI có

góc AMI=góc ANI

góc MAI=góc NAI

AI chung

=>ΔAMI=ΔANI

=>góc AMN=góc ANM=90 độ-1/2*góc ABC và AM=AN

=>góc EMB=góc NMB=90 độ+1/2*gócc ABC

góc IBC=1/2*góc ABC

góc ICB=góc ACB/

=>góc EIB+góc EMB=180 độ

=>ĐPCM

11 tháng 2 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng định lí Pitago vào tam giác vuông ABO, ta có:

A O 2 = A B 2 + B O 2

Suy ra: A B 2 = A O 2 - B O 2 = 5 2 - 3 2  = 16

AB = 4 (cm)

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

DB = DM

EM = EC

Chu vi của tam giác ADE bằng:

AD + DE + EA = AD + DB + AE + EC

 

= AB + AC = 2AB = 2.4 = 8 (cm)

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0
29 tháng 7 2018

a, ∆IAK:∆IBA =>  I A I B = I K I A

Mà IA = IM =>  I M I B = I K I M

=> ∆IKM:∆IMB

b, Chứng minh được:  I M K ^ = K C B ^ => BC//MA(đpcm)