K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

n(n^2+1).(n^2+4)=n(n^2-4+5).(n^2-1+5)=[n(n^2-4+5n)].[(n^2-1)+5]=n.(n^2-4)

=n(n^2-4).(n^2-1)+5n(n^2-4+n^2+4)=(n-2).(n-1).n.(n+1).(n+2)+10n^3

vì (n-2).(n-1).n.(n+1).(n+2) là tích của 5 số tự nhiên liên tiếp chia hết cho 5

10n^3 có chứa thừa số 5 nên chia hết cho 5

không biết đúng hay sai nữa :))

AH
Akai Haruma
Giáo viên
1 tháng 7 2020

Bạn xem lại đề. Với $n=1$ thì $100^n+27n-1=126$ không chia hết cho $36$

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3

8 tháng 8 2019

mk chỉ giúp phần a nha

   B=1+ 4+42 +....+ 499

4B=4+ 42+43+...+4100

 4B-B=4100-1

3B=4100-1

8 tháng 8 2019

B= 1 + 4+4 MŨ 2+.....+4 MŨ 99

4B= 4+4 MŨ 2+4 MŨ 3+.....+4 MŨ 100

4B-B=4 MŨ 100- 1

3B=4 mũ 100-1

Ta có biếu thức3B+1=4 mũ n=4 mũ 100 -1+1=4 mũ n

 Suy ra 4 mũ 100=4 mũ n

 suy ran=100

31 tháng 12 2018

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4