Bài 10: Chứng minh rằng: tan2x - sin2x . tan2x=sin2x
lm hộ giúp mk ik mn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân cả tử và mẫu vế trái với \(cos2x.cosx\) ta được:
\(\frac{sin2x.sinx}{sin2x.cosx-cos2x.sinx}=\frac{sin2x.sinx}{sin\left(2x-x\right)}=\frac{sin2x.sinx}{sinx}=sin2x\)
\(=\left(\dfrac{2sinx.cosx}{cos2x}-\dfrac{sinx}{cosx}\right)\left(2sinx.cosx-\dfrac{sinx}{cosx}\right)\)
\(=sinx\left(\dfrac{2cosx}{cos2x}-\dfrac{1}{cosx}\right).sinx\left(2cosx-\dfrac{1}{cosx}\right)\)
\(=sin^2x\left(\dfrac{2cos^2x-\left(2cos^2x-1\right)}{cosx.cos2x}\right)\left(\dfrac{2cos^2x-1}{cosx}\right)\)
\(=sin^2x\left(\dfrac{1}{cosx.cos2x}\right)\left(\dfrac{cos2x}{cosx}\right)=\dfrac{sin^2x}{cos^2x}=tan^2x\)
\(\frac{sin2x-sin4x}{1-cos2x+cos4x}=\frac{sin2x-2sin2x.cos2x}{1-cos2x+2cos^22x-1}=\frac{sin2x\left(1-2cos2x\right)}{-cos2x\left(1-2cos2x\right)}=\frac{-sin2x}{cos2x}=-tan2x\)
\(\frac{sin4x-sin2x}{1-cos2x+cos4x}=-\left(\frac{sin2x-sin4x}{1-cos2x+cos4x}\right)=-\left(-tan2x\right)=tan2x\) lấy luôn kết quả câu trên cho lẹ, biến đổi thì làm y hệt
ta có : \(\dfrac{sin2x}{tan\left(\dfrac{\pi}{4}-x\right)\left(1+sin2x\right)}=\dfrac{sin2x}{tan\left(-\left(x-\dfrac{\pi}{4}\right)\right)\left(sin^2x+2sinx.cosx+cos^2x\right)}\)
\(=\dfrac{sin2x}{-tan\left(x-\dfrac{\pi}{4}\right)\left(sinx+cosx\right)^2}=\dfrac{sin2x}{-\dfrac{sin\left(x-\dfrac{\pi}{4}\right)}{cos\left(x-\dfrac{\pi}{4}\right)}\left(sinx+cosx\right)^2}\)
\(=\dfrac{sin2x}{-\dfrac{\dfrac{sinx-cosx}{\sqrt{2}}}{\dfrac{sinx+cosx}{\sqrt{2}}}\left(sinx+cosx\right)^2}=\dfrac{sin2x}{-\left(\dfrac{sinx-cosx}{sinx+cosx}\right)\left(sinx+cosx\right)^2}\)
\(=\dfrac{sin2x}{-\left(sinx-cosx\right)\left(sinx+cosx\right)}=\dfrac{sin2x}{-\left(sin^2x-cos^2x\right)}\)
\(=\dfrac{sin2x}{cos^2x-sin^2x}=\dfrac{sin2x}{cos2x}=tan2x\left(đpcm\right)\)
Xét tam giác ABC vuông tại A có AH là đường cao và AM là trung tuyến
Đặt \(\widehat{MAC}=\widehat{MCA}=x\)thì \(\widehat{BMA}=2x\)(theo tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông)
a) Ta có: \(\sin2x=\frac{AH}{AM}=2.\frac{AH}{BC}=2.\frac{AH}{AC}.\frac{AC}{BC}=2.\sin ACH.\cos ACB=2\cos x.\sin x\)
b) \(\cos2x=\frac{HM}{AM}=\frac{2HM}{BC}=\frac{2HC-2CM}{BC}=2.\frac{HC}{BC}-1=2.\frac{HC}{ AC}.\frac{AC}{BC}-1=2.\cos ACH.\cos ACB-1=2\cos^2x-1=2\cos^2x-\left(\sin^2x+\cos^2x\right)=\cos^2x-\sin^2x\)c) \(\tan2x=\frac{\sin2x}{\cos2x}=\frac{2\cos x.\sin x}{\cos^2x-\sin^2x}=\frac{2.\frac{\sin x}{\cos x}}{\frac{\cos^2x}{\cos^2x}-\frac{\sin^2x}{\cos^2x}}=\frac{2\tan x}{1-\tan^2x}\)
Ta có : \(\tan\left(x\right)=\frac{\sin\left(x\right)}{\cos\left(x\right)}\)
\(\Leftrightarrow\tan^2\left(x\right)=\left(\frac{\sin\left(x\right)}{\cos\left(x\right)}\right)^2\)
\(\Leftrightarrow\tan^2\left(x\right)=\frac{sin^2\left(x\right)}{\cos^2\left(x\right)}\)
Và ta có : \(\cos^2\left(x\right)+\sin^2\left(x\right)=1\)
\(\Leftrightarrow\cos^2\left(x\right)=1-\sin^2\left(x\right)\)
VT: \(\tan^2\left(x\right)-\sin^2\left(x\right)\cdot\tan^2\left(x\right)\)
\(=\tan^2\left(x\right)\cdot\left(1-\sin^2\left(x\right)\right)\)
\(=\frac{\sin^2\left(x\right)}{\cos^2\left(x\right)}\cdot\cos^2\left(x\right)\)
\(=\sin^2\left(x\right)=VP\)(đpcm)
(chúc bạn học tốt)