K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2021

a/ Ta có \(\widehat{NCE}=\widehat{ACB}\) (góc đối đỉnh) mà \(\widehat{ACB}=\widehat{ABC}\) (do tg ABC cân tại A) \(\Rightarrow\widehat{ABC}=\widehat{NCE}\)

Xét tg vuông MBD và tg vuông NCE có

BD=CE (đề bài) và \(\widehat{ABC}=\widehat{NCE}\left(cmt\right)\) => tg MBD = tg NCE (hai tg vuông có cạnh góc vuông và 1 góc nhọn tương ứng = nhau thì bằng nhau) => MD=NE

b/ Xét tứ giác MEND có

\(MD\perp BC;NE\perp BC\) => MD//NE

MD=NE (cmt)

=> Tứ giác MEND là hình bình hành (Tứ giác có cặp cạnh đối song song và bằng nhau thì tứ giác đó là hbh)

MN và DE là 2 đường chéo của hbh MEND => I là trung điểm của DE (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

c/ ta có

\(\widehat{ABC}=\widehat{ACB}\)

\(\widehat{ABO}=\widehat{ABC}+\widehat{CBO}=90^o\)

\(\widehat{ACO}=\widehat{ACB}+\widehat{BCO}=90^o\)

\(\Rightarrow\widehat{CBO}=\widehat{BCO}\) => tam giác BOC cân tại O => BO=CO

Xét tg vuông ABO và tg vuông ACO có

AB=AC (Do tg ABC cân tại A)

BO=CO (cmt)

\(\widehat{ABO}=\widehat{ACO}=90^o\)

=> tg ABO = tg ACO (c.g.c) \(\Rightarrow\widehat{BAO}=\widehat{CAO}\) => AO là phân giác của \(\widehat{BAC}\)

=> BO là đường trung trực của BC (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao, đường trung trực)

14 tháng 2 2016

Nhanh lên,mình cần gấp

a: Xét ΔABD vuông tại B và ΔACD vuông tại C có

AD chung

AB=AC

Do đó: ΔABD=ΔACD

nên DB=DC

b: BE⊥AC

DC⊥AC
Do đó: BE//DC

c: \(\widehat{EBC}=\widehat{DCB}\)

mà \(\widehat{DCB}=\widehat{DBC}\)

nên \(\widehat{EBC}=\widehat{DBC}\)

hay BC là tia phân giác của góc EBD

d: Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Ta có: DB=DC
nên D nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AD vuông góc BC

a: Xét ΔABE vuông tại B và ΔDBE vuông tại B có

BE chung

BA=BD

=>ΔABE=ΔDBE

=>EA=ED

=>ΔEAD cân tại E

Xét ΔKBA vuông tại K và ΔFBD vuông tại F có

BA=BD

góc KBA=góc FBD

=>ΔKBA=ΔFBD

=>BK=BF

=>B là trung điểm của KF