Tìm GTNN của bt:
\(A=1-\sqrt{1-6x+9x^2}+\left(3x-1\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$G=1-\sqrt{(3x-1)^2}+(3x-1)^2=1-|3x-1|+|3x-1|^2$
Đặt $|3x-1|=a$ với $a\geq 0$
Ta cần tìm GTNN của $G=1-a+a^2$
Có: $G=(a-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$ với mọi $a\geq 0$
Do đó gtnn của $G$ là $\frac{3}{4}$
Lời giải:
Ta có:
\(A=1-\sqrt{1-6x+9x^2}+(3x-1)^2=1-\sqrt{(3x-1)^2}+(3x-1)^2\)
\(=1-|3x-1|+|3x-1|^2=1-t+t^2\) (đặt \(t=|3x-1|, t\geq 0)\)
\(=(t-\frac{1}{2})^2+\frac{3}{4}\)
Ta thấy \((t-\frac{1}{2})^2\geq 0, \forall t\geq 0\)
\(\Rightarrow A=(t-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)
Vậy $A$ đạt min bằng $\frac{3}{4}$. Giá trị này đạt được tại $t=\frac{1}{2}\Leftrightarrow |3x-1|=\frac{1}{2}$
\(\Leftrightarrow \left[\begin{matrix} 3x-1=\frac{1}{2}\\ 3x-1=-\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=\frac{1}{6}\end{matrix}\right.\)
Bạn chú ý lần sau không đăng 1 bài nhiều lần tránh làm loãng box toán.
\(A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(3x-1\right)^2}=\left|x+1\right|+\left|3x-1\right|\)
Với \(x\le-1:A=-x-1-3x+1=-4x\)
Để A nhỏ nhất thì x lớn nhất => x = -1 => A = 4
Với -1 < x <= 1/3: \(A=x+1-3x+1=2-2x\)
Để A nhỏ nhất thì x lớn nhất => x = 1/3 => A = 4/3
Với x > 1/3: \(A=x+1+3x-1=4x\)
Do x > 1/3 => A > 4/3
=> A min = 4/3 <=> x = 1/3
\(B=3\left(x^2-2x+\frac{1}{3}\right)=3\left[\left(x^2-2x+1\right)-\frac{2}{3}\right]=3\left(x-1\right)^2-2\)
=> Vì 3(x-1)^2 >= 0 => B >= -2
B min = -2 <=> 3(x-1)^2 = 0 <=> x = 1
\(C=2\left(x-\frac{3}{2}\sqrt{x}\right)=2\left[\left(x-2.\frac{3}{4}\sqrt{x}+\frac{9}{16}\right)-\frac{9}{16}\right]=2\left(\sqrt{x}-\frac{3}{4}\right)^2-\frac{9}{8}\)
=> C >= -9/8
C min = -9/8 <=> căn x = 3/4 => x = 9/16
\(A=1-\sqrt{1-6x+9x^2}+\left(3x-1\right)^2\)
\(A=1-\sqrt{\left(3x-1\right)^2}+\left(3x-1\right)^2\)
\(A=1-\left(3x-1\right)+\left(3x-1\right)^2\)
\(A=1-3x+1+9x^2-6x+1\)
\(A=9x^2-9x+3\)
\(A=\left(3x\right)^2-2.3x.\frac{9}{6}+\frac{81}{36}-\frac{27}{36}\)
\(A=\left(3x-\frac{9}{6}\right)^2-\frac{27}{36}\)
\(A=\left(3x-\frac{9}{6}\right)^2-\frac{3}{4}\ge0\forall x\)
Dấu = xảy ra khi:
\(3x-\frac{9}{6}=0\Leftrightarrow3x=\frac{9}{6}\Leftrightarrow x=0,5\)
Vậy Amin = -3/4 tại x = 0,5
A=1-\(\sqrt{\left(3x-1\right)^2}\)+(3x-1)^2
A=1-/3x-1/+(3x-1)^2
đặt t=/3x-1/ với t>=0
khi đó A=t^2-t+1
A=t^2-t+1/4+3/4
A=(t-1/2)^2+3/4
khi đó A>=3/4
dấu bằng xảy ra khi t=1/2 hay x=1/2
Chúc bạn học tốt!
c) \(\sqrt{\left(x-2\right)^2}=10\)
\(x-2=10\)
\(x=12\)
d) \(\sqrt{9x^2-6x+1}=15\)
\(\sqrt{\left(3x\right)^2-2.3x.1+1^2}=15\)
\(\sqrt{\left(3x-1\right)^2}=15\)
\(3x-1=15\)
\(3x=16\)
\(x=\dfrac{16}{3}\)
a) \(đk:x\ge0\)
\(pt\Leftrightarrow3\sqrt{2x}+4\sqrt{2x}-3\sqrt{2x}=12\)
\(\Leftrightarrow4\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=3\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\left(tm\right)\)
b) \(đk:x\ge-2\)
\(pt\Leftrightarrow3\sqrt{x+2}+12\sqrt{x+2}-2\sqrt{x+2}=26\)
\(\Leftrightarrow13\sqrt{x+2}=26\)
\(\Leftrightarrow\sqrt{x+2}=2\Leftrightarrow x+2=4\Leftrightarrow x=2\left(tm\right)\)
c) \(pt\Leftrightarrow\left|x-2\right|=10\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=10\\x-2=-10\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-8\end{matrix}\right.\)
d) \(pt\Leftrightarrow\sqrt{\left(3x-1\right)^2}=15\)
\(\Leftrightarrow\left|3x-1\right|=15\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=15\\3x-1=-15\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{3}\\x=-\dfrac{14}{3}\end{matrix}\right.\)
e) \(đk:x\ge\dfrac{8}{3}\)
\(pt\Leftrightarrow3x+4=9x^2-48x+64\)
\(\Leftrightarrow9x^2-51x+60=0\)
\(\Leftrightarrow3\left(x-4\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)